Skip to main content
Log in

New RF power amplifiers modeling and identification for wideband applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new time-domain model of radio frequency power amplifiers (RFPA) for wideband applications. The proposed model identification requires a set of characterization procedures of a memory polynomial model with delay taps for a two-tone test. This first characterized model is described using amplitude AM/AM and phase AM/PM characteristics including delay and gain parameters, which is able to reproduce distortion sideband asymmetries. A two-tone signal with varying tone spacings is used to find the frequency response of parameters on each nonlinearity order. These response are used to estimate equivalent digital filters giving the final structure of a wideband model. The measurement tests on a Class AB −1.85 GHz RFPA from advanced semiconductor business with various multitone signals show that the proposed architecture describes PA nonlinearities and memory effects with a high level of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The nonlinear model of the transistor is referenced librairie MW6S010NR1 ADS Product Model Design Kit available at http://www.freescale.com, register and follow links : Freescale/Products/RF/RF Power/Transistors: Cellular—to 1000 MHz/MW6S010N/Software & Tools/RF High-Power Models.

References

  1. Ku, H., Mckinley, M., & Kenney, J. (2002). Quantifying memory effects in rf power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 50(12), 2843–2849.

    Article  Google Scholar 

  2. Bohara, V. A., & Ting, S. H. (2008). Analysis of ofdm signals in nonlinear high power amplifier with memory (pp.3653–3657).

  3. Ngoya, E., Quindroit, C., & Nebus, J. (2009). On the continuous-time model for nonlinear-memory modeling of rf power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 57(12), 3278–3292.

    Article  Google Scholar 

  4. Cripps, S. (1999). Rf power amplifiers for wireless communications., Artech House Microwave Library Boston: Artech House.

    Google Scholar 

  5. Vuolevi, J., Rahkonen, T., & Manninen, J. (2001). Measurement technique for characterizing memory effects in rf power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 49(8), 1383–1389.

    Article  Google Scholar 

  6. Williams, D., Leckey, J., & Tasker, P. (2002). A study of the effect of envelope impedance on intermodulation asymmetry using a two-tone time domain measurement system. In IEEE MTT-S International Microwave Symposium Digest, vol. 3 (pp.1841–1844).

  7. de Carvalho, N., & Pedro, J. (2002). A comprehensive explanation of distortion sideband asymmetries. IEEE Transactions on Microwave Theory and Techniques, 50(9), 2090–2101.

    Article  Google Scholar 

  8. Boumaiza, S., & Ghannouchi, F. (2003). Thermal memory effects modeling and compensation in rf power amplifiers and predistortion linearizers. IEEE Transactions on Microwave Theory and Techniques, 51(12), 2427–2433.

    Article  Google Scholar 

  9. Golestaneh, H., Abdipour, A., & Mohammadi, A. (2012). Nonlinear modeling and analysis of a doherty power amplifier driven by non-constant envelope signals. Analog Integrated Circuits and Signal Processing, 72(1), 141–153.

    Article  Google Scholar 

  10. Vuolevi, J., & Rahkonen, T. (2003). Distortion in Rf power amplifiers., Artech House Microwave Library Boston: Artech House.

    Google Scholar 

  11. Duvanaud, C., Robin, F., Dardenne, S., Huin, F., & Dascalescu, L. (2005). Effects of low-frequency drain termination and injection on nonlinear amplifier performances, 15(2), 231–240.

    Google Scholar 

  12. Cripps, S. C. (2002). Advanced techniques in RF power amplifier design. Boston: Artech House.

    Google Scholar 

  13. Kenney, J. S., Woo, W., Ding, L., Raich, R., Ku, H., & Zhou, T. G. (2001). The impact of memory effects on predistortion linearization of rf power amplifiers. In 8th International Symposium on Microwave and Optical Technology (pp. 189–193).

  14. Ku, H., & Kenney, J. (2003). Behavioral modeling of nonlinear rf power amplifiers considering memory effects. IEEE Transactions on Microwave Theory and Techniques, 51(12), 2495–2504.

    Article  Google Scholar 

  15. Ahmed, A., Abdalla, M., Mengistu, E., & Kompa, G. (2004). Power amplifier modeling using memory polynomial with non-uniform delay taps. In 34th European Microwave Conference, vol. 3 (pp.1457–1460).

  16. Calinoiu, N., Bachir, S., & Duvanaud, C. (2011). A power amplifier envelope distortion model using direct calculation of polynomial parameters and delay taps. In European Microwave Integrated Circuits Conference (EuMIC), (pp.292–295).

  17. Calinoiu, N., Bachir, S., & Duvanaud, C. (2013). From narrowband to wideband modeling of radio frequency power amplifiers. In IEEE 11th International New Circuits and Systems Conference (NEWCAS), (pp.1–4).

  18. Ljung, L. (1999). System identification: Theory for the user. Englewood Cliffs: Prentice Hall.

    Book  Google Scholar 

  19. Kouril, F., & Vrba, K. (1988). Non-linear and parametric circuits: principles, theory and applications. Chichester: Ellis Horwood.

    MATH  Google Scholar 

  20. Suchanek, P., & Haasz, V. (2007). Approaches to the adc transfer function modelling. In 12th International Workshop on ADC Modeling and testing (pp.127–130). IMEKO-IWADC: Iasi CERMI Publishing House

  21. Gustavsen, B., & Semlyen, A. (1999). Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, 14(3), 1052–1061.

    Article  Google Scholar 

  22. Parks, T., & Burrus, C. (1987). Digital filter design. New York: John Wiley & Sons.

    MATH  Google Scholar 

  23. Mekonnen, Y., & Schutt-Aine, J. (2007). Broadband macromodeling of sampled frequency data using z-domain vector-fitting method. In IEEE Workshop on Signal Propagation on Interconnects. SPI 2007, (pp.45–48).

  24. Pintelon, R., & Schoukens, J. (2001). System identification: A frequency domain approach. New York: Wiley-IEEE Press.

    Book  Google Scholar 

  25. Kim, J., & Konstantinou, K. (2001). Digital predistortion of wideband signals based on power amplifier model with memory. Electronics Letters, 37(23), 1417–1418.

    Article  Google Scholar 

  26. Ding, L., & Zhou, G. (2004). Effects of even-order nonlinear terms on power amplifier modeling and predistortion linearization. IEEE Transactions on Vehicular Technology, 53(1), 156–162.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smail Bachir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachir, S., Calinoiu, N.E. & Duvanaud, C. New RF power amplifiers modeling and identification for wideband applications. Analog Integr Circ Sig Process 83, 161–172 (2015). https://doi.org/10.1007/s10470-015-0519-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0519-x

Keywords

Navigation