Skip to main content
Log in

Fully digitally programmable voltage mode universal filter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel voltage mode universal filter (UF) using digitally programmable current feedback amplifier. The proposed filter configuration uses only one input variable and realizes all the five filter functions at single output port only. Generation of all the filter functions (types) at the single output port is governed digitally The UF is fully programmable as all the filter functions (types) and their parameters are independently programmable. Other salient features of UF include full cascadability by virtue of appropriate input/output port impedance and use of two grounded capacitors only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kurahashi, P., Hanumolu, P. K., Temes, G. C., Moon, U. K. (2006). A 0.6 V highly linear switched-R MOSFET-C filter. In: IEEE Custom Intergrated Circuits Conference, San Jose, CA pp. 833–836.

  2. Kurahashi, P., Hanumolu, P. K., Temes, G. C., & Moon, U. K. (2007). Design of low voltage highly linear switched-R-MOSFET-C filters. IEEE Journal of Solid States Circuits, 42(8), 1699–1709.

    Article  Google Scholar 

  3. Alzaher, H. (2011). A CMOS highly linear digitally programmable active-RC design approach. IEEE Transactions on Circuits and Systems-I, 58(11), 2636–2646.

    Article  MathSciNet  Google Scholar 

  4. Takagi, S., Ismail, M., Fujii, N. & Brannen, R. (1991). Novel MOSFET-C filter realization using a canonical number of capacitors. In: IEEE International Symposium on Circuits & Systems., pp. 1339–1342.

  5. Zhijun, L. (2009). Mixed-mode universal filter using MCCCII. International Journal of Electronics and Communication, 63(12), 1072–1075.

    Article  Google Scholar 

  6. Siripruchyanun, M., Chanapromma, C., Silapan, P., & Jaikla, W. (2008). BiCMOS current controlled current feedback amplifier (CC-CFA) and its applications. WSEAS Transaction on Electronics, 5(6), 203–219.

    Google Scholar 

  7. Roberts, G., & Sedra, A. (1988). All current-mode frequency selective circuits. Electronics Letters, 25(1), 183–194.

    Google Scholar 

  8. Durham, A., White, W. R., & Hughes, J. (1992). High-linearity continuous time filter in 5-V VLSI CMOS. IEEE Journal of Solid States Circuits, 27(6), 1270–1276.

    Article  Google Scholar 

  9. Alzaher, H. A. (2008). A CMOS digitally programmable universal current-mode filter. IEEE Transaction on Circuit and System–II, 55(8), 758–762.

    Google Scholar 

  10. Tsividis, Y. P. (1994). Integrated continuous time filter design—an overview. IEEE Journal of Solid-State Circuits, 29(6), 166–176.

    Article  Google Scholar 

  11. Alzaher, H. A. (2008). A CMOS digitally programmable filter technique for VLSI applications. Analog Integrated Circuits and Signal Processing, 55(2), 177–187.

    Article  Google Scholar 

  12. Schaumann, R., & Valkenberg, M. E. V. (2001). Design of analog filters. Oxford: Oxford University Press.

    Google Scholar 

  13. Soliman, A. M., & Eman, A. S. (2013). Digitally programmable second generation current conveyor based FPAA. International Journal of Circuit Theory and Application, 41(10), 1074–1084.

    Article  Google Scholar 

  14. Alzaher, H., Tasadduq, N. A., Al-Ees, O., & Al-Ammari, F. (2013). A complementary metal–oxide semiconductor digitally programmable current conveyor. International Journal of Circuit Theory and Application, 41(1), 69–81.

    Google Scholar 

  15. El-Adawy, A. A., Soliman, A. M., & Elwan, H. O. (2002). Low voltage digitally controlled CMOS current conveyor. International Journal of Electronics and Communication, 56(3), 137–144.

    Article  Google Scholar 

  16. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: classification, review, and new proposals. Radioengineering, 17(4), 15–32.

    Google Scholar 

  17. Pun, K. P., Choy, C. S., Chan, C. F., & da-Franca, J. E. (2005). Current division based digital frequency tuning for active RC filters. Analog Integrated Circuits and Signal Processing, 45(1), 61–69.

    Article  Google Scholar 

  18. D’Amico, S., Giannini, V., & Baschirotto, A. (2006). A 4th order active-Gm-RC reconfigurable (UMTS/WLAN) filter. IEEE Journal of Solid States Circuits, 41(7), 1630–1637.

    Article  Google Scholar 

  19. Tsou, S. C., Li, C. F., & Huang, P. C. (2006). A Low-power CMOS linear-in-decibel variable gain amplifier with programmable bandwidth and stable group delay. IEEE Transaction on Circuit and System–II, 53(12), 1436–1440.

    Google Scholar 

  20. Senani, R., Bhaskar, D. R., Singh, A. K., & Singh, V. K. (2013). Current feedback operational amplifiers and their applications. Series: analog circuits and signal processing. Berlin: Springer.

    Book  Google Scholar 

  21. Bhushan, M., & Newcomb, R. (1967). Grounding of capacitor in integrated circuits. Electronic Letters, 3(4), 148–149.

    Article  Google Scholar 

  22. Singh, D., & Afzal, N. (2013). Digitally programmable high-Q VM universal filter. Radioengineering, 22(4), 995–1006.

    Google Scholar 

  23. Alarcon, E., Martinez, H., Vidal, E., & Poveda, A. (2002). Digitally programmable MOS resistive circuit. Electronics Letters, 38(1), 11–13.

    Article  Google Scholar 

  24. Moon, U. K. (2000). CMOS high-frequency switched-capacitor filters for telecommunication applications. IEEE Journal of Solid States Circuits, 35(2), 212–220.

    Article  Google Scholar 

  25. Deng, Y., Chakrabartty, S., & Cauwenberghs, G. (2004). Three-decade programmable fully differential linear OTA. In: International Symposium on Circuits and Systems, 1, 23–26, May 2004.

  26. Alzaher, H., Tasadduq, N. A., & Al-Ees, O. (2011). Digitally programmable high-order current-mode universal filters. Analog Integrated Circuits and Signal Processing, 67(2), 179–187.

    Article  Google Scholar 

  27. Alzaher, H., Tasadduq, N. A., & Al-Ees, O. (2013). Implementation of reconfigurable nth-order filter based on CCII. Analog Integrated Circuits and Signal Processing, 75(3), 539–545.

    Article  Google Scholar 

  28. Alzaher, H., Tasadduq, N. A., & Al-Ees, O. (2012). A class of digitally programmable nth-order filters. International Journal of Circuit Theory and Application, 40(9), 943–956.

    Article  Google Scholar 

  29. Mahmoud, S. A., Hashiesh, M. A., & Soliman, A. M. (2005). Low voltage digitally controlled fully differential current conveyor. IEEE Transaction on Circuit and System-I, 52(10), 2055–2064.

    Article  Google Scholar 

  30. Hassan, T. M., & Mahmoud, S. A. (2009). Fully programmable universal filter with independent gain-ω0-Q control based on new digitally programmable CMOS CCII. Journal of Circuits, Systems, and Computers, 18(5), 875–897.

    Article  Google Scholar 

  31. Beg, P., Khan, I. A., Maheshwari, S., & Siddiqi, M. A. (2011). Digitally programmable fully differential filter. Radioengineering, 20(4), 917–925.

    Google Scholar 

  32. Tangsrirat, W., Prasertsom, D., & Surakampontorn, D. (2009). Low-voltage digitally controlled current differencing buffered amplifier and its application. International Journal of Electronics and Communication, 63(4), 249–258.

    Article  Google Scholar 

  33. Khan, I. A., Khan, M. R., & Afzal, N. (2006). Digitally programmable multifunctional current mode filter using CCIIs. Journal of Active and Passive Electronic Devices, 1(4), 213–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelofer Afzal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Afzal, N. Fully digitally programmable voltage mode universal filter. Analog Integr Circ Sig Process 81, 741–750 (2014). https://doi.org/10.1007/s10470-014-0418-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0418-6

Keywords

Navigation