Skip to main content
Log in

Estimation and compensation of process-induced variations in capacitors for improved reliability in integrated circuits

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes a method for the estimation of capacitor process variations in integrated circuits and for the subsequent compensation of such variations through a calibration scheme that exploits a variable capacitor bank. An architecture for the calibration circuit is proposed, and various problems that arise during implementation are discussed. The design consists of an oscillator whose output frequency is inversely proportional to the capacitor value and simple state machine for measurement of capacitor process variations. The design of optimum capacitor bank is described together with the adequate tuning plan. The circuit is fabricated and verified in 130 nm RF CMOS process and can be easily scaled to sub-100-nm technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Borkar, S. (2005). Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. IEEE Micro, 25(6), 10–16.

    Article  Google Scholar 

  2. Alam, M. (2008). Reliability- and process-variation aware design of integrated circuits. International Journal of Microelectronics Reliability, 48(8), 1114–1122. 19th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF 2008).

    Article  Google Scholar 

  3. Saha, S. K. (2010). Modeling process variability in scaled CMOS technology. IEEE Design Test of Computers, 27(2), 8–16.

    Article  Google Scholar 

  4. Kuhn, K. J., Giles, M. D., Becher, D., Kolar, P., Kornfeld, A., Kotlyar, R., et al. (2011). Process technology variation. IEEE Transactions on Electron Devices, 58(8), 2197–2208.

    Article  Google Scholar 

  5. Kuhn, K. J. (2007). Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS. In Proceedings of IEEE International Electron Devices Meeting (pp. 471–474).

  6. Tschanz, J., Bowman, K., & Vivek De. (2005). Variation-tolerant circuits: Circuit solutions and techniques. In Proceedings of the 42nd annual Design Automation Conference, DAC ’05 (pp. 762–763) New York: ACM.

  7. Unsal, O. S., Tschanz, J. W., Bowman, K., De, V., Vera, X., Gonzalez, A., et al. (2006). Impact of parameter variations on circuits and microarchitecture. IEEE Micro, 26(6), 30–39.

    Article  Google Scholar 

  8. Kim, Kyung-Ki, & Kim, Yong-Bin. (2009). A novel adaptive design methodology for minimum leakage power considering PVT variations on nanoscale VLSI systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(4), 517–528.

    Article  Google Scholar 

  9. Onobajo, Marvin, & Silva-Martinez, Jose. (2012). Analog circuit design for process variation-resilient systems-on-a-chip. Dordrecht: Springer.

    Book  Google Scholar 

  10. Malkov, Andrey, Vasiounin, Dmitry, & Semenov, Oleg. (2011). A review of PVT compensation circuits for advanced CMOS technologies. Circuits and Systems, 2(3), 162–169.

    Article  Google Scholar 

  11. Liaperdos, John, Arapoyanni, Angela, & Tsiatouhas, Yiorgos. (2013). A test and calibration strategy for adjustable RF circuits. Analog Integrated Circuits and Signal Processing, 74(1), 175–192.

    Article  Google Scholar 

  12. Tong, Tao, Wenhuan, Yu., Hanumolu, Pavan K., & Temes, Gabor C. (2012). Calibration technique for SAR analog-to-digital converters. Analog Integrated Circuits and Signal Processing, 73(1), 301–309.

    Article  Google Scholar 

  13. Lo, T.-Y., Hsiao, C.-C., Hsueh, K.-W. & Li, H.-S. (2009) A 1-V 60 MHz bandpass filter with quality-factor calibration in 65nm CMOS. In Proceedings of IEEE Asian Solid-State Circuits Conference (pp. 53–56).

  14. Mobarak, M., Onabajo, M., Silva-Martinez, J., & Sanchez-Sinencio, E. (2010). Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE Journal of Solid-State Circuits, 45(2), 351–367.

    Article  Google Scholar 

  15. Akbarian, Seyed Mohammad Fahmideh, Lotfi, Reza, & Maymandi-Nejad, Mohammad. (2013). Low-voltage low-power Gm-C filters: A modified configuration for improving performance. Analog Integrated Circuits and Signal Processing, 74(1), 297–302.

    Article  Google Scholar 

  16. Sanchez-Rodriguez, T., Munoz, F., Galan, J., Torralba, A., & Carvajal, R. G. (2013). Compact SC frequency tuning circuit for continuous-time Gm-C filters. Analog Integrated Circuits and Signal Processing, 74(2), 473–478.

    Article  Google Scholar 

  17. Lo, Chi-Hsiang. (2013). A Gm-C continuous-time anti-alias filter for UWB analog front-end. Analog Integrated Circuits and Signal Processing, 75(1), 171–177.

    Article  Google Scholar 

  18. Aparicio, R., & Hajimiri, A. (2002). Capacity limits and matching properties of integrated capacitors. IEEE Journal of Solid-State Circuits, 37(3), 384–393.

    Article  Google Scholar 

  19. Lee, C.-W. (Jan 2012). On-chip Benchmarking and Calibration without External References. Ph.D. thesis, EECS Department, University of California, Berkeley

  20. Hastings, A. (2006). The art of analog layout. Upper Saddle River, NJ: Pearson Prentice Hall.

    Google Scholar 

  21. Razavi, B. (2001). Design of analog CMOS integrated circuit. New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan M. Milosavljević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milosavljević, I.M., Grujić, D.N., Simić, Đ.Č. et al. Estimation and compensation of process-induced variations in capacitors for improved reliability in integrated circuits. Analog Integr Circ Sig Process 81, 253–264 (2014). https://doi.org/10.1007/s10470-014-0390-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0390-1

Keywords

Navigation