Skip to main content
Log in

Linearly tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The paper deals with an interesting oscillator solution derived from LC Colpitts circuit structure. Electronically controllable current gain of the current amplifier is utilized for driving of oscillation condition together with two transconductances in frame of voltage differencing transconductance amplifier for adjusting of frequency of oscillation. In the proposed structure these elements replace common bipolar transistor and metal coil. Designed circuit offers important advantages, i.e. absence of metal coil, quadrature outputs, amplitudes of generated signals independent of tuning process, linear electronic control of oscillation frequency (independent of oscillation condition). Implementation of circuit for amplitude stabilization and automatic control of oscillation condition for designed circuit is simple. These benefits are not available in classical LC Colpitts structures or in many well-known third-order oscillators. The theoretical conclusions are supported by experiments with behavioral representation employing commercially available devices and also by simulations using CMOS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposal. Radioengineering, 17(4), 15–32.

    Google Scholar 

  2. Surakampontorn, W., & Thitimajshima, W. (1988). Integrable electronically tunable current conveyors. IEE Proceedings-G, 135(2), 71–77.

    Google Scholar 

  3. Fabre, A., & Mimeche, N. (1994). Class A/AB second-generation current conveyor with controlled current gain. Electronics Letters, 30(16), 1267–1268.

    Article  Google Scholar 

  4. Tangsrirat, W. (2008). Electronically tunable multi-terminal floating nullor and its application. Radioengineering, 17(4), 3–7.

    Google Scholar 

  5. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transaction on Circuits and Systems–I, 43(2), 82–91.

    Article  Google Scholar 

  6. Sotner, R., Kartci, A., Jerabek, J., Herencsar, N., Dostal, T., & Vrba, K. (2012). An additional approach to model current followers and amplifiers with electronically controllable parameters from commercially available ICs. Measurement Science Review, 12(6), 255–265.

    Article  Google Scholar 

  7. Geiger, R. L., & Sanchez-Sinencio, E. (1985). Active filter design using operational transconductance amplifier: A tutorial. IEEE Circuits and Devices Magazine, 1, 20–32.

    Article  Google Scholar 

  8. Minaei, S., Sayin, O. K., & Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Transaction on Circuits and Systems–I, 53(7), 1448–1457.

    Article  Google Scholar 

  9. Sotner, R., Jerabek J., Herencsar N., Dostal T., Vrba K., Electronically adjustable modification of CFA: Double current controlled CFA (DCC-CFA). In 35th International Conference on Telecommunications and Signal Processing (TSP 2012), Prague, Czech Republic, 2012, pp. 401–405.

  10. Sotner, R., Herencsar, N., Jerabek, J., Dvorak, R., Kartci, A., Dostal, T., et al. (2013). New double current controlled CFA (DCC-CFA) based voltage-mode oscillator with independent electronic control of oscillation condition and frequency. Journal of Electrical Engineering, 64(2), 65–75.

    Article  Google Scholar 

  11. Marcellis, A., Ferri, G., Guerrini, N. C., Scotti, G., Stornelli, V., & Trifiletti, A. (2009). The VGC-CCII: A novel building block and its application to capacitance multiplication. Analog Integrated Circuits and Signal Processing, 58(1), 55–59.

    Article  Google Scholar 

  12. Sotner, R., Hrubos, Z., Herencsar, N., Jerabek, J., Dostal, T., & Vrba, K. (2014). Precise electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits Systems and Signal Processing, 33(1), 1–35.

    Article  Google Scholar 

  13. Kennedy, M. P. (1994). Chaos in the Colpitts oscillator. IEEE Transactions on Circuit and Systems–I, 41(11), 771–774.

    Article  Google Scholar 

  14. Soliman, A. M. (1998). Current mode CCII oscillators using grounded capacitors and resistors. International Journal of Circuit Theory and Applications, 26(5), 431–438.

    Article  MATH  Google Scholar 

  15. Soliman, A. M. (1998). Novel generation method of current mode Wien-type oscillators using current conveyors. International Journal of Electronics, 85(6), 737–747.

    Article  MathSciNet  Google Scholar 

  16. Linares-Barranco, B., Rodriguez-Vazquez, A., Sanchez-Sinencio, E., & Huertas, J. L. (1991). CMOS OTA-C high-frequency sinusoidal oscillators. IEEE Journal of Solid-State Circuits, 26(2), 160–165.

    Article  Google Scholar 

  17. Horng, J. W. (2009). Current-mode third-order quadrature oscillator using CDTAs. Active and Passive Electronic Components, 2009, 1–5.

    Article  Google Scholar 

  18. Horng, J. W., Lee, H., & Wu, J. (2010). Electronically tunable third-order quadrature oscillator using CDTAs. Radioengineering, 19(2), 326–330.

    Google Scholar 

  19. Maheshwari, S. (2010). Current-mode third-order quadrature oscillator. IET Circuits, Devices and Systems, 4(3), 188–195.

    Article  MathSciNet  Google Scholar 

  20. Maheshwari, S., & Khan, I. A. (2005). Current controlled third order quadrature oscillator. IET Proceeding of Circuits Devices Systems, 152(6), 605–607.

    Article  Google Scholar 

  21. Maheshwari, S. (2009). Quadrature oscillator using grounded components with current and voltage outputs. IET Circuits Devices Systems, 3(4), 153–160.

    Article  Google Scholar 

  22. Chatuverdi, B., & Maheshwari, S. (2013). Third-order quadrature oscillators circuit with current and voltage outputs. ISRN Electronics, 2013, 1–8.

    Google Scholar 

  23. Promee, P., & Dejhan, K. (2002). An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier. International Journal of Electronics, 89(5), 365–379.

    Article  Google Scholar 

  24. Kwawsibsam, A., Sreewirote, B., Jaikla, W. (2011). Third-order voltage-mode quadrature oscillator using DDCC and OTAs. In Proceeding of International Conference on Circuits, Systems and Simulation IPCSIT, vol. 7, Singapore, pp. 317–321.

  25. Horng, J. W. (2011). Current/voltage-mode third order qaudrature oscillator employing two multiple outputs CCII and grounded capacitors. Indian Journal of Pure and Applied Physics, 49(7), 494–498.

    Google Scholar 

  26. Kumngern M., & Junnapiya S. (2011). Current-mode third-order quadrature oscillator using minimum elements. In Proceeding of the International Conference on Electrical Engineering and Informatics (ICEEI ‘11), pp. 1–4.

  27. Koton, J., Herencsar, N., Vrba, K., & Metin, B. (2012). Current- and voltage-mode third-order quadrature oscillator. In Proceeding of 13th international Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, pp. 1203–1206.

  28. Sotner, R., Jerabek, J., Herencsar, N., Petrzela, J., Vrba, K., Kincl, Z. (2013). Tunable oscillator derived from Colpitts structure with simply controllable condition of oscillation and synthetic inductor based on current amplifier and voltage differencing transconductance amplifier. In Proceeding of the 8th International Conference on Electrical and Electronics Engineering, pp. 21–25.

  29. Basak, A. (1991). Analogue electronic circuits and systems (pp. 153–167). New York: Cambridge University.

    Book  Google Scholar 

  30. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2009). Analysis and design of analog integrated circuits (5th ed.). USA: Wiley.

    Google Scholar 

  31. Yesil, A., Kacar, F., & Kuntman, H. (2011). New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering, 20(3), 632–637.

    Google Scholar 

  32. Satansup, J., Pukkalanun, T., & Tangsrirat, W. (2013). Electronically tunable single-input five-output voltage-mode universal filter using VDTAs and grounded passive elements. Circuits, Systems, and Signal Processing, 32(3), 945–957.

    Article  Google Scholar 

  33. Prasad, D., Bhaskar, D. R., & Srivastava, M. (2013). Universal current-mode biquad filter using a VDTA. Circuits and Systems, 4(1), 32–36.

    Article  Google Scholar 

  34. Prasad, D., & Bhaskar, D. R. (2012). Electronically controllable explicit current output sinusoidal oscillator employing single VDTA. ISRN Electronics, 2012(382560), 1–5.

    Article  Google Scholar 

  35. Herencsar, N., Sotner, R., Koton, J., Misurec, J., & Vrba, K. (2013). New compact VM four-phase oscillator employing only single z-copy VDTA and all grounded passive elements. Elektronika Ir Elektrotechnika, 19(10), 87–90.

    Article  Google Scholar 

  36. Prasad, D., & Bhaskar, D. R. (2012). Grounded and floating inductance simulation circuits using VDTAs. Circuits and Systems, 3(4), 342–347.

    Article  Google Scholar 

  37. EL2082: Current-Mode multiplier, intersil (Elantec) [online]. last modified 2003 [cit.27.6.2013]. <http://www.intersil.com/data/fn/fn7152.pdf>.

  38. OPA660: Wide-bandwidth operational transconductance amplifier and buffer, texas instruments [online]. 1995 [cit.9.2.2014].http://www.ti.com/lit/ds/symlink/opa660.pdf.

  39. OPA2650: dual wideband, low power voltage feedback operational amplifier, texas instruments [online]. 2000 [cit.9.2.2014]. http://www.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=opa2650&fileType=pdf.

  40. MOSIS parametric test results of TSMC LO EPI SCN018 technology. [ftp://isi.edu/pub/mosis/vendors/tsmc-018/t44e_lo_epi-params.txt]. Cited 24 May 2012.

  41. Surakampontorn, W., & Kumwachara, K. (1992). CMOS-based electronically tunable current conveyor. Electronics Letters, 28(14), 1316–1317.

    Article  Google Scholar 

Download references

Acknowledgments

Research described in the paper was supported by Czech Science Foundation Project Under No. 14-24186P and by internal Grant No. FEKT-S-14-2281. The support of the project CZ.1.07/2.3.00/20.0007 WICOMT, financed from the operational program Education for competitiveness, is gratefully acknowledged. The described research was performed in laboratories supported by the SIX project; the registration number CZ.1.05/2.1.00/03.0072, the operational program Research and Development for Innovation. Dr. Herencsar was supported by the project CZ.1.07/2.3.00/30.0039 of the Brno University of Technology. A preliminary version of this paper has been presented at the 8th International Conference on Electrical and Electronics Engineering—ELECO 2013 [28].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Sotner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotner, R., Jerabek, J., Herencsar, N. et al. Linearly tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integr Circ Sig Process 81, 121–136 (2014). https://doi.org/10.1007/s10470-014-0353-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0353-6

Keywords

Navigation