Skip to main content
Log in

8 Gbits/s inductorless transimpedance amplifier in 90 nm CMOS technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This work presents the design and the measured performance of a 8 Gb/s transimpedance amplifier (TIA) fabricated in a 90 nm CMOS technology. The introduced TIA uses an inverter input stage followed by two common-source stages with a 1.5 kΩ feedback resistor. The TIA is followed by a single-ended to differential converter stage, a differential amplifier and a 50 Ω differential output driver to provide an interface to the measurement setup. The optical receiver shows a measured optical sensitivity of −18.3 dBm for a bit error rate = 10−9. A gain control circuitry is integrated with the TIA to increase its input photo-current dynamic range (DR) to 32 dB. The TIA has an input photo-current range from 12 to 500 μA without overloading. The stability is guaranteed over the whole DR. The optical receiver achieves a transimpedance gain of 72 dBΩ and 6 GHz bandwidth with 0.3 pF total input capacitance for the photodiode and input PAD. The TIA occupies 0.0036 mm2 whereas the complete optical receiver occupies a chip area of 0.46 mm2. The power consumption of the TIA is only 12 mW from a 1.2 V single supply voltage. The complete chip dissipates 60 mW where a 1.6 V supply is used for the output stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, C. Y., Wang, C. S., & Wang, C. K. (2007). An 18-mW two-stage CMOS transimpedance amplifier for 10 Gb/s optical application. In IEEE Asian Solid-State Circuits Conference, A-SSCC, pp. 412–415.

  2. Lu, Z., Yeo, K. S., Ma, J., Do, M. A., Lim, W. M., & Chen, X. (2007). Broad-band design techniques for transimpedance amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(3), 590–600.

    Article  Google Scholar 

  3. Park, K., Oh, W. S., Choi, B. Y., Han, J. W., & Park, S. M. (2007). A 4-channel 12.5 Gb/s common-gate transimpedance amplifier array for DVI/HDMI applications. In Proceedings—IEEE International Symposium on Circuits and Systems, pp. 2192–2195.

  4. Park, S. M., & Yoo, H. J. (2004). 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications. IEEE Journal of Solid-State Circuits, 39(1), 112–121.

    Article  MathSciNet  Google Scholar 

  5. Chan, C. T., & Chen, O. T. C. (2006). Inductor-less 10 Gb/s CMOS transimpedance amplifier using source-follower regulated cascode and double three-order active feedback. In Proceedings—IEEE International Symposium on Circuits and Systems, pp. 5487–5490.

  6. Atef, M., & Zimmermann, H. (2012). 10 Gbit/s 2 mW inductorless transimpedance amplifier. In IEEE International Symposium on Circuits and Systems (ISCAS), May 2012, pp. 1728–1731.

  7. Säckinger, E. (2005). Broadband circuits for optical fiber communication. Hoboken, NJ: Wiley–Interscience.

    Book  Google Scholar 

  8. Schneider, K., & Zimmermann, H. (2006). Highly sensitive optical receivers. Springer series in advanced microelectronics, Berlin.

  9. Atef, M., Swoboda, R., & Zimmermann, H. (2010). Optical receiver for multicarrier modulation in short-reach communication. Electronics Letters, 46(3), 233–234.

    Article  Google Scholar 

  10. Schneider, K., & Zimmermann, H. (2006). Three-stage burst-mode transimpedance amplifier in deep-sub-μm CMOS technology. IEEE Transactions on Circuits and Systems, 53(7), 1458–1467.

    Article  Google Scholar 

  11. Aznar, F., Gaberl, W., & Zimmermann, H. (2011). A 0.18 μm CMOS transimpedance amplifier with 26 dB dynamic range at 2.5 Gb/s. Microelectronics Journal, 42(10), 1136–1142.

    Article  Google Scholar 

  12. Ingels, M., Van Der Plas, G., Crols, J., & Steyaert, M. (1994). A CMOS 18 THzΩ 248 Mb/s transimpedance amplifier and 155 Mb/s LED-driver for low cost optical fiber links. IEEE Journal of Solid-State Circuits, 29(12), 1552–1559.

    Article  Google Scholar 

  13. Vivien, L., Polzer, A., Marris-Morini, D., Osmond, J., Hartmann, J., Crozat, P., et al. (2012). Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Optics Express, 20, 1096–1101.

    Article  Google Scholar 

  14. Shammugasamy, B, & Zulkifli, T. Z. A. (2008). A 10-Gb/s fully balanced differential output transimpedance amplifier in 0.18-μm CMOS technology for SDH/SONET application. In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 684–687.

  15. Chen, H. L., Chen, C. H., Yang, W. B., & Chiang, J. S. (2009). Inductorless CMOS receiver front-end circuits for 10-Gb/s optical communications. Tamkang Journal of Science and Engineering, 12(4), 449–458.

    Google Scholar 

  16. Momeni, O., Hashemi, H., & Afshari, E. (2010). A 10-Gb/s inductorless transimpedance amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(12), 926–930.

    Article  Google Scholar 

  17. Hassan, M., & Zimmermann, H. (2011). An 85 dB dynamic range transimpedance amplifier in 40 nm CMOS technology. In NORCHIP 2011, pp. 1–4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Atef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atef, M., Aznar, F., Schidl, S. et al. 8 Gbits/s inductorless transimpedance amplifier in 90 nm CMOS technology. Analog Integr Circ Sig Process 79, 27–36 (2014). https://doi.org/10.1007/s10470-013-0242-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0242-4

Keywords

Navigation