Skip to main content
Log in

Complementary BAW oscillator for ultra-low power consumption and low phase noise

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A complementary cross coupled BAW parallel resonance oscillator offering ultra-low power consumption and a good phase noise performance is presented. The power consumption in this structure is 50 % less than the classical NMOS based structure without any penalty in the phase noise performance. Rather, this structure serves to reduce the noise contribution of the biasing transistors at the output leading to a marginal improvement in thermal noise performance as compared to the NMOS based structure. Furthermore, the flicker noise upconversion of this complementary structure can be minimized by proper design considerations. The power consumption in case of such a complementary structure based oscillator (designed in 180nm CMOS process) employing a 2.497 GHz BAW resonator is around 675 μW for an amplitude of 300 mV with a phase noise of −140 dBc/Hz at 1 MHz offset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Porret, A. S., Melly, T., Python, D., Enz, C. C., & Vittoz, E. A. (2001). An ultralow-power uhf transceiver integrated in a standard digital cmos process: Architecture and receiver. IEEE Journal Solid-State Circuits, 36(3), 452–466.

    Article  Google Scholar 

  2. Ruffieux, D. (2002). A high-stability, ultra-low power differential oscillator circuit for demanding radio applications. In Proceedings of the IEEE ESSCIRC (pp. 85–88).

  3. Hajimiri, A., & Lee, T. H. (2000). The design of low noise oscillators. Norwell, MA: Kluwer.

    Google Scholar 

  4. El Aabbaoui, H., David, J. B., de Foucauld, E., & Vincent, P. (2009). Ultra low phase noise 2.1 GHz colpitts oscillators using BAW resonator. In Microwave symposium digest, 2009. MTT ’09. IEEE MTT-S International (pp. 1285–1288).

  5. Vittoz, E. (2010). Low-power crystal and MEMS oscillators—the experience of watch developments. New York: Springer.

    Book  Google Scholar 

  6. Hajimiri, A., & Lee, T. H. (2000). Oscillator phase noise: A tutorial. IEEE Journal of Solid State Circuits, 35(3), 326–336.

    Google Scholar 

  7. Hajimiri, A., & Lee, T. H. (1998). A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits, 33(2), 179–194.

    Article  Google Scholar 

  8. Vittoz, E. A., & Fellrath, J. (1977) CMOS analog integrated circuits based on weak inversion. IEEE Journal of Solid State Circuits, 12(3), 224–231.

    Google Scholar 

  9. Rai, S., & Otis, B. (2007). A 1 V 600 μW 2.1 GHz quadrature VCO using BAW resonators. In IEEE international solid-state circuits conference (ISSCC).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavasimhan Thirunarayanan.

Appendix

Appendix

1.1 Calculation of the impedance seen by the noise current sources

The impedance seen by a noise current flowing across the output can be calculated from the small signal equivalent circuit of Fig. 2b. Writing the Kirchoff’s laws at various nodes in the circuit, this small signal circuit can be reduced to the one shown in Fig. 11. Yc in this figure represents the admittance of the transistors seen at the output and it approximately equals −2Gm. Computing the equivalent impedance of the parallel combination of CL and Yc,

$$ {\rm Z}_{{\rm eq}1}=\frac{2}{{\rm Y}_{{\rm c}}}\left|\right|\frac{1}{{\rm sC}_{\rm L}} =\frac{2}{{\rm Y}_{\rm c}+2{\rm sC}_{\rm L}} $$
(18a)
$$ {\rm Z}_{{\rm eq}1}=\frac{2}{{\rm Y}_{\rm c}+2{\rm j}\omega {\rm C}_{\rm L}} $$
(18b)
$$ {\rm Z}_{{\rm eq}1}=\frac{2\left({\rm Y}_{\rm c}-2{\rm j}\omega {\rm C}_{\rm L}\right)}{{\rm Y}_{\rm c}^{2}+4\omega^{2} {\rm C}_{\rm L}^{2}}\approx \frac{2{\rm Y}_{\rm c}}{4\omega^{2} {\rm C}_{\rm L}^{2}}+\frac{1}{{\rm sC}_{\rm L}} $$
(18c)

This equivalent circuit is depicted in Fig. 12, where \({\rm R}^{\prime}\) represents ℜ[Zeq1] ≈ Gm/C 2L ω2. This real impedance compensates the motional resistance Rm of the resonator at the working frequency,i.e. \(-{\rm R}_{\rm m}+{\rm R}^{\prime}=0\). The impedance of the motional branch is given by \({\rm Z}_{\rm m}={\rm R}_{\rm m}+{\rm sL}_{\rm m}+\frac{1}{{\rm sC}_{\rm m}}\). The total impedance seen by the noise current source is

$$ {\rm Z}_{{\rm eq}}={\rm Z}_{\rm m}\left|\right|{\rm Z}_{{\rm eq}1}. $$
(19)

Simplifying the above equation, substituting \({\rm R}_{\rm m} = -{\rm R}^{\prime}\) and noting that the oscillation frequency is given by \(\omega_0=\omega_{\rm m}\sqrt{1+\frac{{\rm C}_{\rm m}}{{\rm C}_{\rm L}}}\), replacing for ω0 and LmCm = 1/ω 2m , Zeq becomes,

$$ {\rm Z}_{{\rm eq}}=-\frac{{\rm R}_{\rm m}\left(\omega^{2}+\omega_0^{2}-2\omega_{\rm m}^{2}\right)}{\omega^{2}-\omega_0^{2}}-{\rm j}\frac{1+{\rm C}_{\rm L}{\rm C}_{\rm m}{\rm R}_{\rm m}^{2}\omega^{2}-\frac{\omega^{2}}{\omega_{\rm m}^{2}}}{\omega\left({\rm C}_{\rm L}+{\rm C}_{\rm m}-\frac{{\rm C}_{\rm L}\omega^2}{\omega_{\rm m}^{2}}\right)} $$
(20)
Fig. 11
figure 11

Impedance seen by a noise current source—I

Fig. 12
figure 12

Impedance seen by a noise current source—II

The frequency ω is taken to be offset from the oscillation frequency by \(\Updelta\omega\) i.e. \(\omega=\omega_0+\Updelta\omega\), the real part of the impedance seen by the noise current source is

$$ \Re[{\rm Z}_{{\rm eq}}]\approx-\frac{2{\rm R}_{\rm m}\left(\omega_0^{2}-\omega_{\rm m}^{2}\right)}{\omega^{2}-\omega_0^{2}}\approx-\frac{{\rm R}_{\rm m}\left(\omega_0^2-\omega_{\rm m}^2\right)}{\delta\omega\omega_0}. $$
(21)

Inserting \(\frac{{\rm C}_{\rm m}}{{\rm C}_{\rm L}}=\frac{\omega_0^2}{\omega_{\rm m}^2}-1\), the above equation becomes

$$ \Re[{\rm Z}_{{\rm eq}}]\approx\frac{1}{{\rm Q}_{\rm m}{{\rm C}_{\rm L}}\Updelta\omega}. $$
(22)

In the imaginary part of the impedance in (21), the CLCmRmω2 term is negligible. Therefore, the imaginary term becomes

$$ \Im[{\rm Z}_{{\rm eq}}]\approx\frac{1-\frac{\omega^{2}}{\omega_{\rm m}^{2}}}{\omega {\rm C}_{\rm L}\left(1+\frac{{\rm C}_{\rm m}}{{\rm C}_{\rm L}}-\frac{\omega^{2}}{\omega_{\rm m}^{2}}\right)} $$
(23)

Simplifying yields

$$ \Im[{\rm Z}_{{\rm eq}}]\approx\frac{1-\frac{\omega_0^{2}}{\omega_{\rm m}^{2}}}{\omega {\rm C}_{\rm L}\left(\frac{\omega_0^{2}}{\omega_{\rm m}^{2}}-\frac{\omega^{2}}{\omega_{\rm m}^{2}}\right)} $$
(24)

Replacing \(\omega=\omega_0+\Updelta\omega\),

$$ \Im[{\rm Z}_{{\rm eq}}]\approx\frac{\frac{{\rm C}_{\rm m}}{{\rm C}_{\rm L}}}{\omega {\rm C}_{\rm L}\left(\frac{\omega_0^{2}}{\omega_{\rm m}^{2}}-\frac{\omega^{2}}{\omega_{\rm m}^{2}}\right)} $$
(25a)
$$ \Rightarrow\Im[{\rm Z}_{{\rm eq}}]\approx\frac{1}{\omega {\rm C}_{\rm L}}\frac{\frac{{\rm C}_{\rm m}}{{\rm C}_{\rm L}}}{\frac{2\Updelta\omega\omega_0}{\omega_{\rm m}^{2}}} $$
(25b)
$$ \Rightarrow\Im[{\rm Z}_{{\rm eq}}]\approx\frac{1}{\omega {\rm C}_{\rm L}}\frac{\omega_{\rm m}{\rm C}_{\rm m}}{2\Updelta\omega {\rm C}_{\rm L}} $$
(25c)

The total impedance seen by the current source is therefore,

$$ {\rm Z}_{{\rm eq}}\approx\frac{1}{{\rm Q}_{\rm m}{\rm C}_{\rm L}\Updelta\omega}+\frac{1}{{\rm j}\omega {\rm C}_{\rm L}}\frac{\omega_{\rm m}{\rm C}_{\rm m}}{2\Updelta\omega {\rm C}_{\rm L}} $$
(26)

For calculating the noise PSD, only the magnitude of the impedance is taken into account. Since the absolute value of the real part in the above equation is much less than its imaginary counterpart,it can be neglected leaving

$$ \left|{\rm Z}_{{\rm eq}}\right|^2=\frac{1}{\omega^2 {\rm C}_{\rm L}^2}\frac{\omega_{\rm m}^2 {\rm C}_{\rm m}^2}{4\Updelta\omega^2 {\rm C}_{\rm L}^2}. $$
(27)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirunarayanan, R., Heragu, A., Ruffieux, D. et al. Complementary BAW oscillator for ultra-low power consumption and low phase noise. Analog Integr Circ Sig Process 73, 769–777 (2012). https://doi.org/10.1007/s10470-012-9916-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9916-6

Keywords

Navigation