Skip to main content
Log in

A 5 GHz 90-nm CMOS all digital phase-locked loop

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An all digital phase-locked loop (ADPLL) has been implemented in a 90-nm CMOS process. It uses a phase-frequency detector (PFD) connected to two time-to-digital converters (TDC). To save power the TDCs use delay line cells with uneven delay time. During frequency acquisition an automatic tuning bank controller selects active bank of the digitally controlled oscillator (DCO), which features three separate tuning banks for both high resolution and wide frequency tuning range. To further increase the resolution a high-speed delta-sigma modulator is also used, modulating the DCO fine tuning word. The PLL achieves a measured phase noise of −125 dBc/Hz at 1 MHz offset from a divided-by-2 carrier frequency of 2.58 GHz. The core area is 0.33 mm2 and the current consumption is 30 mA from a 1.2 V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Staszewski, R. B., & Balsaras, P. T. (2006). All-digital frequency synthesizer in deep-submicron CMOS. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  2. Dunning, J., Garcia, G., Lundberg, J., & Nuckolls, E. (1995). An all-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors. IEEE Journal of Solid-State Circuits, 30(4), 412–422.

    Google Scholar 

  3. Lu, P., & Sjöland, H. (2009). A 5 GHz 90-nm CMOS all digital phase-locked loop. In IEEE Asia solid-state circuits conf., November 2009, pp. 65–68.

  4. Baronti, F., Lunardini, D., Roncella, R., & Saletti, R. (2004). A self-calibrating delay-locked delay line with shunt-capacitor circuit scheme. IEEE Journal of Solid-State Circuits, 39(2), 384–387.

    Article  Google Scholar 

  5. Karadamoglou, K., Paschalidis, N. P., Sarris, E., Stamatopoulos, N., Kottaras, G., & Paschalidis, V. (2004). An 11-bit high-resolution and adjustable-range CMOS time-to-digital converter for space science instruments. IEEE Journal of Solid-State Circuits, 39(1), 214–222.

    Article  Google Scholar 

  6. Hsu, C.-M., Straayer, M. Z., & Perrott, M. H. (2008). A low-noise, wide-BW 3.6 GHz digital fractional-N frequency synthesizer with a noise shaping time-to-digital converter and quantization noise cancellation. IEEE Journal of Solid-State Circuits, 43(12), 2776–2786.

    Article  Google Scholar 

  7. Hanumolu, P., Kim, M., Wei, G., & Moon, U. (2006). A 1.6 Gbps digital clock and data recovery circuit. In Proc. IEEE custom integrated circuits conference (CICC), September 2006, pp. 603–606.

  8. Chang, H. H., Lin, J. W., Yang, C. Y., & Liu, S. I. (2002). A wide-range delay-locked loop with a fixed latency of one clock cycle. IEEE Journal of Solid-State Circuits, 37(8), 1021–1027.

    Article  Google Scholar 

  9. Chang, H. H., Wang, P. Y., Conan Zhan, J. H., & Hsieh, B. Y. (2008). A fractional spur-free ADPLL with loop-gain calibration and phase-noise cancellation for GSM/GPRS/EDGE. In 2008 IEEE int. solid-state circuits conf. Dig. tech. papers (ISSCC), pp. 200–201.

  10. Nikolic, B. N., Oklobdzija, V. G., Stajonovic, V., Jia, W., Chiu, J., & Leung, M. (2000). Improved sense-amplifier-based flip-flop: design and measurements. IEEE Journal of Solid-State Circuits, 35(6), 876–884.

    Article  Google Scholar 

  11. Rylyakov, A. V., Tiernol, J. A., English, G. J., Friedman, D., & Meghelli, M. (2007). A wide power-supply range (0.5 V-to-1.3 V) wide tuning range (500 MHz-to-8 GHz) all-static CMOS ADPLL in 65 nm SOI. In 2007 IEEE int. solid-state circuits conf. Dig. tech. papers (ISSCC), pp. 172–173.

  12. Song, M., Kwak, Y. H., Ahn, S., Kim, W., Park, B. H., & Kim, C. (2009). A 10 MHz to 315 MHz cascaded hybrid PLL with piecewise linear calibration TDC. In Proc. IEEE custom integrated circuits conference (CICC), September 2009, pp. 243–246.

  13. Grollitsch, W., Nonis, R., & Dalt, N. D. (2010). A 1.4 psrms-period-jitter TDC-less fractional-N digital PLL with digitally controlled ring oscillator in 65 nm CMOS. In 2010 IEEE int. solid-state circuits conf. Dig. tech. papers (ISSCC), pp. 478–479.

  14. Hegazi, E., Sjöland, H., & Abidi, A. (2001). A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits, 36(12), 1921–1930.

    Article  Google Scholar 

  15. Sjöland, H. (2002). Improved switched tuning for differential CMOS VCO’s. IEEE Transactions on Circuits and Systems II, 49(5), 352–355.

    Article  Google Scholar 

  16. Lu, P., & Sjöland, H. (2008). A 5.4 GHz 90-nm CMOS digitally controlled LC oscillator with 21% tuning range, 1.1 MHz resolution, and 180 dB FOM. In Proc. IEEE Norchip conf., November 2008, pp. 223–226.

  17. Temporiti, E., Wu, C. W., Baldi, D., Tonietto, R., & Svelto, F. (2009). A 3 GHz fractional all-digital PLL with a 1.8 MHz bandwidth implementing spur reduction techniques. IEEE Journal of Solid-State Circuits, 44(3), 824–834.

    Article  Google Scholar 

  18. Ferriss, M., & Flynn, M. P. (2007). A 14 mW fractional-N PLL modulator with an enhanced digital phase detector and frequency switching scheme. In 2007 IEEE int. solid-state circuits conf. Dig. tech. papers (ISSCC), pp. 352–353.

Download references

Acknowledgment

The authors would like to thank the VINNOVA industrial excellence center in System Design on Silicon for funding, and UMC (United Microelectronics Corporation) for access to a state-of-the-art CMOS technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Sjöland, H. A 5 GHz 90-nm CMOS all digital phase-locked loop. Analog Integr Circ Sig Process 66, 49–59 (2011). https://doi.org/10.1007/s10470-010-9501-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9501-9

Keywords

Navigation