Skip to main content
Log in

Locally Unmixed Modules and Linearly Equivalent Ideal Topologies

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let R be a commutative Noetherian ring, and let N be a non-zero finitely generated R-module. The purpose of this paper is to show that N is locally unmixed if and only if, for any N-proper ideal I of R generated by ht N I elements, the topology defined by (I N)(n), n ≥ 0, is linearly equivalent to the I-adic topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, S.H.: Asymptotic primes and asymptotic grade on modules. J. Algebra 174, 980–998 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brodmann, M.P.: Asymptotic stability of Ass R (M/I n M). Proc. Amer. Math. Soc. 74, 16–18 (1979)

    MathSciNet  Google Scholar 

  3. Brodmann, M.P.: The asymptotic nature of the analytic spread. Math. Proc. Camb. Philos. Soc. 86, 35–39 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brodmann, M.P.: Finiteness of ideal transforms. J. Algebra 63, 162–185 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brodmann, M.P., Sharp, R.Y.: Local cohomology; An algebraic introduction with geometric applications. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  6. Bruns, W., Herzog, J.: Cohen-Macaulay rings. Cambridge University Press, Cambridge, UK (1998)

    Book  MATH  Google Scholar 

  7. Enochs, E.E., Jenda, M.G.: Relative homological algebra. Walter de Gruyter, Berlin, New York (2000)

    Book  MATH  Google Scholar 

  8. Kaplansky, I.: Commutative rings. University of Chicago Press, Chicago (1974)

    MATH  Google Scholar 

  9. Katz, D.: Prime divisors, asymptotic R-sequences and unmixed local rings. J. Algebra 95, 59–71 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. McAdam, S.: Asymptotic prime divisors, lecture notes in mathematics 1023. Springer-Verlag, New York (1983)

    Google Scholar 

  11. McAdam, S.: Quintasymptotic primes and four results of Schenzel. J. Pure Appl. Algebra 47, 283–298 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nagata, M.: Local Rings. Interscience, New York (1961)

    MATH  Google Scholar 

  13. Naghipour, R.: Locally unmixed modules and ideal topologies. J. Algebra 236, 768–777 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Northcott, D.G., Rees, D.: Reductions of ideals in local rings. Proc. Camb. Philos. Soc. 50, 145–158 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ratliff, L.J.: The topology determined by the symbolic powers of primary ideals. Comm. Algebra 13, 2073–2104 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ratliff, L. J. Jr: On asymptotic prime divisors. Pac. J. Math. 111, 395–413 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schenzel, P.: Finiteness of relative Rees ring and asymptotic prime divisors. Math. Nachr. 129, 123–148 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schenzel, P.: On the use of local cohomology in algebra and geometry, Six lectures on commutative algebra, pp 241–292, Bellaterra (1996)

  19. Schenzel, P.: Independent elements, unmixedness theorems and asymptotic prime divisors. J. Algebra 92, 157–170 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schenzel, P.: Symbolic powers of prime ideals and their topology. Proc. Amer. Math. Soc. 93, 15–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Verma, J.K.: On ideals whose adic and symbolic topologies are linearly equivalent. J. Pure Appl. Algebra 47, 205–212 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to the referee for his/her careful reading of the paper and valuable suggestions. Also, we would like to thank Professors M.P. Brodmann and S. Goto for their useful comments on Theorem 2.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Naghipour.

Additional information

Presented by Michel Van den Bergh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadorian, M., Sedghi, M. & Naghipour, R. Locally Unmixed Modules and Linearly Equivalent Ideal Topologies. Algebr Represent Theor 20, 1249–1257 (2017). https://doi.org/10.1007/s10468-017-9685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-017-9685-0

Keywords

Mathematics Subject Classification (2010)

Navigation