Skip to main content
Log in

Multiplier Hopf Monoids

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

The notion of multiplier Hopf monoid in any braided monoidal category is introduced as a multiplier bimonoid whose constituent fusion morphisms are isomorphisms. In the category of vector spaces over the complex numbers, Van Daele’s definition of multiplier Hopf algebra is re-obtained. It is shown that the key features of multiplier Hopf algebras (over fields) remain valid in this more general context. Namely, for a multiplier Hopf monoid A, the existence of a unique antipode is proved — in an appropriate, multiplier-valued sense — which is shown to be a morphism of multiplier bimonoids from a twisted version of A to A. For a regular multiplier Hopf monoid (whose twisted versions are multiplier Hopf monoids as well) the antipode is proved to factorize through a proper automorphism of the object A. Under mild further assumptions, duals in the base category are shown to lift to the monoidal categories of modules and of comodules over a regular multiplier Hopf monoid. Finally, the so-called Fundamental Theorem of Hopf modules is proved — which states an equivalence between the base category and the category of Hopf modules over a multiplier Hopf monoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böhm, G., Gómez-Torrecillas, J., Lack, S.: Weak multiplier bimonoids, Preprint available at arXiv:1603.05702

  2. Böhm, G., Gómez-Torrecillas, J., López-Centella, E.: Weak multiplier bialgebras. Trans. Amer. Math. Soc. 367(12), 8681–8721 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böhm, G., Lack, S.: Multiplier bialgebras in braided monoidal categories. J. Algebra 423, 853–889 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böhm, G., Lack, S.: A category of multiplier bimonoids, Appl. Categ. Structures, doi:10.1007/s10485-016-9429-z. arXiv:1509.07171

  5. Dauns, J.: Multiplier rings and primitive ideals. Amer. Math. Soc. 145, 125–158 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Commer, K.: Galois objects for algebraic quantum groups. J. Algebra 321 (6), 1746–1785 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drabant, B., Van Daele, A., Zhang, Y.: Actions of multiplier Hopf algebras. Commun. Algebra 27(9), 4117–4172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hogbe-Nlend, H.: Bornologies and functional analysis. Translated from the French by V. B. Moscatelli. North-Holland Mathematics Studies, Vol. 26 Notas De Matemática, vol. 62. North-Holland Publishing Co., Amsterdam (1977)

  9. Janssen, K., Vercruysse, J.: Multiplier Hopf and bi-algebras. J. Algebra Appl. 9(2), 275–303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88(1), 55–112 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. I. Academic, New York (1983)

  12. Kurose, H., Van Daele, A., Zhang, Y.: Corepresentation theory of multiplier Hopf algebras II. Int. J. Math. 11(2), 233–278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Larson, R.G., Sweedler, M.E.: An associative orthogonal form for Hopf algebras. Amer. J. Math. 91, 75–94 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meyer, R.: Local and analytic cyclic homology. EMS Tracts. Math. 3 (2007)

  15. Timmermann, T.: An invitation to quantum groups and duality EMS textbooks in mathematics (2008)

  16. Van Daele, A.: Multiplier Hopf algebras. Trans. Amer. Math. Soc. 342, 917–932 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Van Daele, A., Zhang, Y.: Corepresentation theory of multiplier Hopf algebras I. Int. J. Math. 10(4), 503–539 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Van Daele, A., Zhang, Y.: Galois theory for multiplier hopf algebras with integrals. Alg. Represent. Theory 2(1), 83–106 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Voigt, C.: Bornological quantum groups. Pacific J. Math. 235(1), 93–135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zimmermann-Huisgen, B.: Pure submodules of direct products of free modules. Math. Annalen 224(2), 233–245 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Lack.

Additional information

Presented by Susan Montgomery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, G., Lack, S. Multiplier Hopf Monoids. Algebr Represent Theor 20, 1–46 (2017). https://doi.org/10.1007/s10468-016-9630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9630-7

Keywords

Mathematics Subject Classification (2010)

Navigation