, Volume 16, Issue 3, pp 843-857
Date: 03 Feb 2012

Classes of Almost Clean Rings

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A ring is clean (almost clean) if each of its elements is the sum of a unit (regular element) and an idempotent. A module is clean (almost clean) if its endomorphism ring is clean (almost clean). We show that every quasi-continuous and nonsingular module is almost clean and that every right CS (i.e. right extending) and right nonsingular ring is almost clean. As a corollary, all right strongly semihereditary rings, including finite AW *-algebras and noetherian Leavitt path algebras in particular, are almost clean. We say that a ring R is special clean (special almost clean) if each element a can be decomposed as the sum of a unit (regular element) u and an idempotent e with aR ∩ eR = 0. The Camillo-Khurana Theorem characterizes unit-regular rings as special clean rings. We prove an analogous theorem for abelian Rickart rings: an abelian ring is Rickart if and only if it is special almost clean. As a corollary, we show that a right quasi-continuous and right nonsingular ring is left and right Rickart. If a special (almost) clean decomposition is unique, we say that the ring is uniquely special (almost) clean. We show that (1) an abelian ring is unit-regular (equiv. special clean) if and only if it is uniquely special clean, and that (2) an abelian and right quasi-continuous ring is Rickart (equiv. special almost clean) if and only if it is uniquely special almost clean. Finally, we adapt some of our results to rings with involution: a *-ring is *-clean (almost *-clean) if each of its elements is the sum of a unit (regular element) and a projection (self-adjoint idempotent). A special (almost) *-clean ring is similarly defined by replacing “idempotent” with “projection” in the appropriate definition. We show that an abelian *-ring is a Rickart *-ring if and only if it is special almost *-clean, and that an abelian *-ring is *-regular if and only if it is special *-clean.

Presented by Kenneth Goodearl.
This work was supported by the Visiting Scientists Fellowship Program grant from The Scientific and Technological Research Council of Turkey (TUBITAK) and was carried out in part during the visit of Lia Vaš to the Hacettepe University in July 2011. The second author is grateful to the faculty and staff of Hacettepe University for their hospitality and support. The authors are also grateful to all who helped improve the language of the paper.