Skip to main content

Advertisement

Log in

On the origin of the evolutionary computation species influences of Darwin’s theories on computer science

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This paper presents a small sample of evidences of the direct and clear influence of the Darwin’s Theory of Evolution on the Computer Science field, putting the core seed of the well-known Evolutionary Computation and making Computer Science overcome some previous algorithmic limitations. The paper also shows how the more faithful to the Evolution Theory the algorithms, the better their performance and robustness, thus uncovering the crucial importance of the ideas collected in “On the Origin of Species” for the development of Computation and, indirectly through this, for the development of a great diversity of knowledge areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altshuler E, Linden D (1977) Design of a wire antenna using a genetic algorithm. J Electron Def 20(7): 50–52

    Google Scholar 

  • Applebaum P (2000) Darwin. Norton, W. W. & Company, New York

    Google Scholar 

  • Arifovic J (2001) Evolutionary dynamics of currency substitution. J Econ Dyn Control 25: 395–417

    Article  MATH  Google Scholar 

  • Ashley S (1992) Engineous explores the design space. Mechanical Engineering, pp 49–52

  • Axelrod R (1984) The evolution of cooperation. Basic Books, New York

    Google Scholar 

  • Bäck T (1998) On the behavior of evolutionary algorithms in dynamic fitness landscapes. In: Proceedings of IEEE international conference on evolutionary computation, IEEE Press, pp 446–451

  • Banzhaf W, Eeckman FH (1995) Evolution and biocomputation, Lecture notes on computer science, vol 899. Springer, Berlin

  • Batten D (2008) Genetic algorithms—do they show that evolution works? Available via http://creationontheweb.com/content/view/2431. Accessed 12 Dec 2008

  • Beasley JE, Sonander J, Havelock P (2001) Scheduling aircraft landings at london heathrow using a population heuristic. J Oper Res Soc 52(5): 483–493

    Article  MATH  Google Scholar 

  • Benini E, Toffolo A (2002) Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation. J Sol Energy Eng 124(4): 357–363

    Article  Google Scholar 

  • Bremermann J (1962) Optimization through evolution and recombination. Spartan Books, Washinton D.C., pp 93–106

    Google Scholar 

  • Cannon W (1932) The wisdom of the body. Norton and Company, New York

    Google Scholar 

  • Cantú-Paz E (2001) Migration policies, selection pressure, and parallel evolutionary algorithms. J Heuristics 7(4): 311–334

    Article  MATH  Google Scholar 

  • Castillo MDD, Gasós J, García-Alegre M (1993) Genetic processing of the sensorial information. Sens Actuators A 37-38: 255–259

    Article  Google Scholar 

  • Charbonneau P (1995) Genetic algorithms in astronomy and astrophysics. Astrophys J Suppl Ser 101: 309–334

    Article  Google Scholar 

  • Cobb H, Grefenstette J (1993) Genetic algorithms for tracking changing environments. In: Proceedings of the fifth international conference on genetic algorithms. Morgan Kaufman, San Francisco, pp 523–530

  • Darwin CR (1979) The origin of species, reprint of the 1976 issue of the 1968 edition published by penguin books edn. Gramercy Books, USA

    Google Scholar 

  • Dawkins R (1996) The blind watchmaker: why the evidence of evolution reveals a universe without design. W.W. Norton, New York

    Google Scholar 

  • DeJong KA (2006) Evolutionary computation: a unified approach. MIT Press, Cambridge, MA

    Google Scholar 

  • Dembski W (2002) No free lunch: why specified complexity cannot be purchased without intelligence. Rowman & Littlefield, Lanham, Maryland

    MATH  Google Scholar 

  • Dewey J (1965) The influence of Darwin on philosophy: and other essays in contemporary thought. H. Holt and Company, Bloomintong

    Google Scholar 

  • Duffy J, Feltovich N (1999) Observation of others affect learning in strategic environments? an experimental study. Int J Game Theory 28: 131–152

    Article  MathSciNet  MATH  Google Scholar 

  • Ellwood CA (1909) The influence of darwin on sociology. Psychol Rev 16: 188–194

    Article  Google Scholar 

  • Fogel DB, Chellapilla K, Angeline P (2002) Evolutionary computation and economic models: sensitivity and unintended consequences. Physica-Verlag, New York, pp 245–269

    Google Scholar 

  • Fogel LJ (1999) Artificial intelligence through simulated evolution: forty years of evolutionary programming. John Wiley & Sons, New York

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, Chichester, WS, UK

    MATH  Google Scholar 

  • Fraser AS (1957) Simulation of genetic systems by automatic digital computers i: introduction. Aust J Biol Sci 10: 484–491

    Google Scholar 

  • Fraser AS (1957) Simulation of genetic systems by automatic digital computers ii: Effects of linkage on rates of advance under selection. Aust J Biol Sci 10: 492–499

    Google Scholar 

  • Fraser AS (1957) Simulation of genetic systems by automatic digital computers vi: epistasis. Aust J Biol Sci 13: 150–162

    Google Scholar 

  • Friedberg RM (1958) A learning machine: Part i. IBM J Res Dev 2(1): 2–13

    Article  MathSciNet  Google Scholar 

  • Friedberg RM, Dunham B, North JH (1959) A learning machine: part ii. IBM J Res Dev 3(3): 282–287

    Article  MathSciNet  Google Scholar 

  • Friedman G (1956) Select feedback computers for engineering synthesis and nervous system analogy. Master’s thesis, UCLA, Los Angeles

  • Giro R, Cyrillo M, Galvão DS (2002) Designing conducting polymers using genetic algorithms. Chem Phys Lett 366(1–2): 170–175

    Article  Google Scholar 

  • Glen RC, Payne AWR (1995) A genetic algorithm for the automated generation of molecules within constraints. J Comput Aided Mol Des 9: 181–202

    Article  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley, Reading

    MATH  Google Scholar 

  • Haas OCL, Bumham KJ, Mills JA (1997) On improving physical selectivity in the treatment of cancer: A systems modelling and optimisation approach. Control Eng Pract 5(12): 1739–1745

    Article  Google Scholar 

  • Haupt R, Haupt SE (1998) Practical genetic algorithms. Wiley, New York

    MATH  Google Scholar 

  • Hayden J (1909) Darwin and evolutionary ethics. Psychol Rev 16: 195–206

    Article  Google Scholar 

  • Hoffman A (1989) Arguments on evolution: a paleontologist’s perspective. Oxford University Press, New York

    Google Scholar 

  • Holland JH (1962) Outline for a logical theory of adaptive systems. J ACM 9(3): 279–314

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Hornby G (2003) Generative representations for evolving families of designs. In: Proceedings of Genetic and Evolutionary Computation Conference 2003. Springer, Berlin, pp 1678–1689

  • Jensen M (2003) Generating robust and flexible job shop schedules using genetic algorithms. IEEE Trans Evol Comput 7(3): 275–288

    Article  Google Scholar 

  • Keber C (2002) Evolutionary computation in option pricing: determining implied volatilities based on american put options. Physica-Verlag, New York, pp 399–415

    Google Scholar 

  • Kewley R, Embrechts M (2002) Computational military tactical planning system. IEEE Trans Syst Man Cybern Part C Appl Rev 32(2): 161–171

    Article  Google Scholar 

  • Kicinger R, Arciszewski T, DeJong K (2004) Morphogenesis and structural design: Cellular automata representations of steel structures in tall buildings. In: Proceedings of the congress of evolutionary computation 2004. IEEE Press, pp 41–418

  • Koza J (1992) A genetic approach to econometric modeling. Pergamon Press, Oxford, UK, pp 57–75

    Google Scholar 

  • Koza J, Bennett F, Andre D, Keane MA (1999) Genetic programming III: Darwinian invention and problem solving. Morgan Kaufmann Publishers, San Francisco

    MATH  Google Scholar 

  • Langdon WB, Poli R (2002) Foundations of genetic programming. Springer, Berlin

    MATH  Google Scholar 

  • Laurent J, Nightingale J (eds) (2001) Darwinism and evolutionary economics. Edward Elgar Publishing

  • Lee Y, Zak SH (2002) Designing a genetic neural fuzzy antilock-brake-system controller. IEEE Trans Evol Comput 6(2): 198–211

    Article  Google Scholar 

  • Li J (2006) Enhancing financial decision making using multi-objective financial genetic programming. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2006). Vancouver, Canada, pp 7935–7942

  • Morrison R (2004) Designing evolutionary algorithms for dynamic environments. Springer, Berlin

    MATH  Google Scholar 

  • Morrison R, DeJong K (1999) A test problem generator for non-stationary environments. In: Michalewicz Z, Shoenauer M, Yao Z, Zalzala A (eds) Proceedings of the 1999 congress on evolutionary computation. IEEE Press, New York, pp 7935–7942

  • Naik G (1996) Back to darwin: In sunlight and cells, science seeks answers to high-tech puzzles. The Wall Street Journal January(16th):A1

  • Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B Cybern 366(1): 141

    Google Scholar 

  • Pereira R (2002) Forecasting ability but no profitability: an empirical evaluation of genetic algorithm-optimised technical trading rules. Physica-Verlag, New York, pp 287–309

    Google Scholar 

  • Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. www.Lulu.com

  • Rechenberg I (1973) Evolutionsstrategie—optimierung technischer systeme nach prinzipien der biologischen evolution. PhD thesis, reprinted by Fromman-Holzboog

  • Reynolds RG (1999) An overview of cultural algorithms: advances in evolutionary computation. McGraw Hill Press, New York

    Google Scholar 

  • Rizki M, Zmuda M, Tamburino L (2002) Evolving pattern recognition systems. IEEE Trans Evol Comput 6(6): 594–609

    Article  Google Scholar 

  • Rowland J (1909) The influence of darwin on psychology. Psychol Rev 16: 152–169

    Article  Google Scholar 

  • Sambridge M, Gallagher K (1993) Earthquake hypocenter location using genetic algorithms. Bull Seismol Soc Am 83(5): 1467–1491

    Google Scholar 

  • Sarma J (1998) An analysis of decentralized and spatially distributed genetic algorithms. PhD thesis, George Mason University, Virginia

  • Sasaki D, Morikawa M, Obayashi S, Nakahashi K (2001) Aerodynamic shape optimization of supersonic wings by adaptive range multiobjective genetic algorithms. In: Zitzler E, Deb K, Thiele L, Coello CA, Corne DW (eds) Evolutionary multi-criterion optimization: proceedings of the first international conference EMO 2001. Springer, Zurich, Switzerland, pp 639–652

  • Sato S, Otori K, Takizawa A, Sakai H, Ando Y, Kawamura H (2002) Applying genetic algorithms to the optimum design of a concert hall. J Sound Vib 258(3): 517–526

    Article  Google Scholar 

  • Schechter B (2000) Putting a darwinian spin on the diesel engine. The New York Times September(19th):F3

  • Serrano JI, del Castillo MD (2007) Evolutionary learning of document categories. Inf Retr 10(1): 69–83

    Article  Google Scholar 

  • Serrano JI, Alonso J, del Castillo MD, Naranjo JE (2005) Evolutionary optimization of autonomous vehicle tracks. In: Proceedings of the IEEE congress on evolutionary computation (CEC) 2005. IEEE Computer Society Press, Edinburgh, UK, pp 1332–1339

  • Seymour-Smith M (1998) 100 most influential books ever written. Citadel Press, Secaucus

    Google Scholar 

  • Skolicki Z, DeJong K (2004) Improving evolutionary algorithms with multi-representation island models. In: Proceedings of parallel problem solving from nature VIII, Springer, pp 420–429

  • Spears W (1994) Simple subpopulation schemes. In: Sebald A (ed) Proceedings of the third conference on evolutionary programming. World Scientific Publisher, pp 297–307

  • Stanley K (2004) Efficient evolution of neural networks through complexification. PhD thesis, University of Texas, Austin

  • Todd S, Latham W (1992) Evolutionary art and computers. Academic Press, Orlando

    MATH  Google Scholar 

  • Turing A (1950) Computing machinery and intelligence. Mind 59: 94–101

    MathSciNet  Google Scholar 

  • Weismann D, Hammel U, Bäck T (1998) Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Trans Evol Comput 2(4): 162–167

    Article  Google Scholar 

  • Whitley D, Rana S, Hechendom R (1999) The island model genetic algorithm: on separability, population size and convergence. J Comput Inf Technol 2(1): 33–47

    Google Scholar 

  • Williams E, Crossley W, Lang T (2001) Average and maximum revisit time trade studies for satellite constellations using a multiobjective genetic algorithm. J Astronaut Sci 49(3): 385–400

    Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the 6th international congress on genetics, pp 356–366

  • Yan W, Clark CD (2007) Evolving robust gp solutions for hedge fund stock selection in emerging markets. In: Proceedings of the genetic and evolutionary computation conference GECCO’07. ACM Press, New York, pp 2234–2241

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Serrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, J.I., del Castillo, M.D. On the origin of the evolutionary computation species influences of Darwin’s theories on computer science. Artif Intell Rev 38, 41–54 (2012). https://doi.org/10.1007/s10462-011-9246-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-011-9246-6

Keywords

Navigation