Skip to main content

Advertisement

Log in

Information processing, specificity of practice, and the transfer of learning: considerations for reconsidering fidelity

  • Reflections
  • Published:
Advances in Health Sciences Education Aims and scope Submit manuscript

Abstract

Much has been made in the recent medical education literature of the incorrect characterization of simulation along a continuum of low to high fidelity (Cook et al. JAMA 306(9): 978–988, 2011; Norman et al. Med Educ 46(7): 636–647, 2012; Teteris et al. Adv Health Sci Educ 17(1): 137–144, 2012). For the most part, the common definition within the medical education community has been that simulations that present highly realistic performance characteristics, contexts, and scenarios are referred to as high-fidelity, while simulations that reduce to-be-learned skills to simpler constructs or constituent parts are referred to as low-fidelity. The issue with this is that highly-realistic has tended to mean the degree to which the simulation looks like the criterion context with little regard for what features of the simulation are in fact relevant to the skill that the educator hopes to teach. The inherent assumption that high fidelity simulations lead to better learning—an assumption for which there is a lack of supporting evidence (Norman et al. Med Educ 46(7): 636–647, 2012)—only exacerbates the problem. So much so that some have suggested that the term be abandoned all together (Hamstra et al. Acad Med J Assoc Am Med Coll 2014). While, it is true that fidelity and its importance are misconstrued in the medical education literature, the construct, defined classically as the degree of faithfulness that exists between two entities, is still fundamental to understanding the effectiveness that any one simulation might have in preparing learners for clinical performance. However, the concept of simulation fidelity must be recast in terms of the fundamental information processing events that underpin human performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3(2), 111–150.

    Article  Google Scholar 

  • Allen, J., Buffardi, L., & Hays, R. (1991). The relationship of simulator fidelity to task and performance variables: Report no. ARI-91-58. Alexandria, Va: Army Research Institute for the Behavioral and Social Sciences.

  • Anderson, J.R. & Bower, G.H. (2013). Human associative memory. Psychology press.

  • Baddeley, A.D. (2006). Working memory: An overview. In S.J. Pickering (Ed.), Working memory and education (pp. 1–31). Burlington: Elsevier.

  • Barnett, M. L., Ross, D., Schmidt, R. A., & Todd, B. (1973). Motor skills learning and the specificity of training principle. Research Quarterly, American Association for Health, Physical Education and Recreation, 44(4), 440–447.

    Google Scholar 

  • Becker, J. T., & Morris, R. G. (1999). Working memory (s). Brain and Cognition, 41(1), 1–8.

    Article  Google Scholar 

  • Beilock, S. L., & Carr, T. H. (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130(4), 701.

    Article  Google Scholar 

  • Bernstein, N. (1934/1967). The coordination and regulation of movement. New York: Pergamon Press.

  • Brydges, R., Carnahan, H., Rose, D., Rose, L., & Dubrowski, A. (2010). Coordinating progressive levels of simulation fidelity to maximize educational benefit. Academic Medicine, 85(5), 806–812.

    Article  Google Scholar 

  • Cook, D. A., Hatala, R., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., et al. (2011). Technology-enhanced simulation for health professions education: A systematic review and meta-analysis. JAMA, 306(9), 978–988.

    Article  Google Scholar 

  • Cooper, S., Kinsman, L., Buykx, P., McConnell-Henry, T., Endacott, R., & Scholes, J. (2010). Managing the deteriorating patient in a simulated environment: Nursing students’ knowledge, skill and situation awareness. Journal of Clinical Nursing, 19(15–16), 2309–2318.

    Article  Google Scholar 

  • De Groot, A. D. (1978). Thought and choice in chess (Vol. 4). The Hague: Mouton.

    Google Scholar 

  • Dieckmann, P., Gaba, D., & Rall, M. (2007). Deepening the theoretical foundations of patient simulation as social practice. Simulation in Healthcare, 2(3), 183–193.

    Article  Google Scholar 

  • Donders, F.C. (1868/1969). On the speed of mental processes. Acta psychologica, 30, 412–431.

    Google Scholar 

  • Elliott, D., Grierson, L. E. M., Hayes, S. J., & Lyons, J. (2011). Action representations in perception, motor control and learning: Implications for medical education. Medical Education, 45(2), 119–131.

    Article  Google Scholar 

  • Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023.

    Article  Google Scholar 

  • Ells, J. G. (1973). Analysis of temporal and attentional aspects of movement control. Journal of Experimental Psychology, 99(1), 10.

    Article  Google Scholar 

  • Ericsson, K.A.E. (1996). The road to excellence: The acquisition of expert performance in the arts and sciences, sports, and games. Lawrence Erlbaum Associates, Inc.

  • Fanning, R. M., & Gaba, D. M. (2007). The role of debriefing in simulation-based learning. Simulation in Healthcare, 2(2), 115–125.

    Article  Google Scholar 

  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381.

    Article  Google Scholar 

  • Furmanski, C. S., & Engel, S. A. (2000). An oblique effect in human primary visual cortex. Nature Neuroscience, 3(6), 535–536.

    Article  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Grierson, L.E.M., & Elliott, D. (2009). Goal-directed aiming and the relative contribution of two online control processes. The American Journal of Psychology, 122(3), 309–324.

    Google Scholar 

  • Grierson, L.E.M., Gonzalez, C., & Elliott, D. (2009). Kinematic analysis of early online control of goal-directed reaches: A novel movement perturbation study. Motor Control, 13(3), 280–296.

    Google Scholar 

  • Grober, E. D., Hamstra, S. J., Wanzel, K. R., Reznick, R. K., Matsumoto, E. D., Sidhu, R. S., et al. (2004). The educational impact of bench model fidelity on the acquisition of technical skill: The use of clinically relevant outcome measures. Annals of Surgery, 240(2), 374.

    Article  Google Scholar 

  • Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224.

    Article  Google Scholar 

  • Guadagnoli, M., Morin, M. P., & Dubrowski, A. (2012). The application of the challenge point framework in medical education. Medical Education, 46(5), 447–453.

    Article  Google Scholar 

  • Haji, F. A., Hoppe, D. J., Morin, M. -P., Giannoulakis, K., Koh, J., Rojas, D., & Cheung, J. J. H. (2013). What we call what we do affects how we do it: A new nomenclature for simulation research in medical education. Advances in Health Sciences Education. doi:10.1007/s10459-013-9452-x.

  • Hamstra, S.J., Brydges, R., Hatala, R., Zendejas, B., & Cook, D.A. (2014). Reconsidering fidelity in simulation-based training. Academic Medicine, 89(3), 387–392.

    Google Scholar 

  • Henry, F.M. (1968). Specificity versus generality in learning motor skill. Classical Studies on Physical Activity, 328–331.

  • Henry, F. M., & Rogers, D. E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly: American Association for Health, Physical Education and Recreation, 31(3), 448–458.

    Google Scholar 

  • Holding, D. H. (1976). An approximate transfer surface. Journal of Motor Behavior, 8(1), 1–9.

    Article  Google Scholar 

  • Isaranuwatchai, W., Brydges, R., Carnahan, H., Backstein, D., & Dubrowski, A. (2013). Comparing the cost-effectiveness of simulation modalities: A case study of peripheral intravenous catheterization training. Advances in Health Sciences Education. doi:10.1007/s10459-013-9464-6.

  • Issenberg, S. B., McGaghie, W. C., Hart, I. R., Mayer, J. W., Felner, J. M., Petrusa, E. R., Waugh, R. A., Brown, D.D., Safford, R. R., Gessner, I. H., Gordon, D. L., & Ewy, G. A. (1999). Simulation technology for health care professional skills training and assessment. Journal of the American Medical Association, 282(9), 861–866.

    Google Scholar 

  • Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proceedings of the National Academy of Sciences, 88(11), 4966–4970.

    Article  Google Scholar 

  • Keele, S. W., & Posner, M. I. (1968). Processing of visual feedback in rapid movements. Journal of Experimental Psychology, 77(1), 155.

    Article  Google Scholar 

  • Ker, J., Mole, L., & Bradley, P. (2003). Early introduction to interprofessional learning: A simulated ward environment. Medical Education, 37(3), 248–255.

    Article  Google Scholar 

  • Kulasegaram, K., Min, C., Ames, K., Howey, E., Neville, A., & Norman, G. (2012). The effect of conceptual and contextual familiarity on transfer performance. Advances in Health Sciences Education, 17(4), 489–499.

    Article  Google Scholar 

  • Lee, T. D. (1988). Transfer-appropriate processing: A framework for conceptualizing practice effects in motor learning. Advances in Psychology, 50, 201–215.

    Article  Google Scholar 

  • Lee, T. D., & Magill, R. A. (1983). The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology. Learning, Memory, and Cognition, 9(4), 730.

    Article  Google Scholar 

  • Lockhart, R. S. (2002). Levels of processing, transfer-appropriate processing, and the concept of robust encoding. Memory, 10(5–6), 397–403.

    Article  Google Scholar 

  • Matsumoto, E. D., Hamstra, S. J., Radomski, S. B., & Cusimano, M. D. (2002). The effect of bench model fidelity on endourological skills: A randomized controlled study. The Journal of Urology, 167(3), 1243–1247.

    Article  Google Scholar 

  • Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52.

    Google Scholar 

  • Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Keith Smith, J. E. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95(3), 340.

    Article  Google Scholar 

  • Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, 16(5), 519–533.

    Article  Google Scholar 

  • Norman, G., Dore, K., & Grierson, L. (2012). The minimal relationship between simulation fidelity and transfer of learning. Medical Education, 46(7), 636–647.

    Article  Google Scholar 

  • Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science education, 86(4), 548–571.

    Article  Google Scholar 

  • Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 411.

    Article  Google Scholar 

  • Osgood, C. E. (1949). The similarity paradox in human learning: A resolution. Psychological Review, 56(3), 132.

    Article  Google Scholar 

  • Proteau, L., Marteniuk, R. G., Girouard, Y., & Dugas, C. (1987). On the type of information used to control and learn an aiming movement after moderate and extensive training. Human Movement Science, 6(2), 181–199.

    Article  Google Scholar 

  • Regehr, G., & Norman, G. R. (1996). Issues in cognitive psychology: Implications for professional education. Academic Medicine, 71(9), 988–1001.

    Article  Google Scholar 

  • Rehmann, A.J., Mitman, R.D., & Reynolds, M.C. (1995). A Handbook of flight simulation fidelity requirements for human factors research. Crew System Ergonomics Information Analysis Center Wright-Patterson Afb Oh.

  • Sanders, A. F. (1980). 20 Stage analyses of reaction processes. Advances in Psychology, 1, 331–354.

    Article  Google Scholar 

  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225.

    Article  Google Scholar 

  • Schmidt, R. A., & White, J. L. (1972). Evidence for an error detection mechanism in motor skills: A test of Adams’ closed-loop theory. Journal of Motor Behavior, 4(3), 143–153.

    Article  Google Scholar 

  • Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5(2), 179.

    Google Scholar 

  • Starkes, J., & Allard, F. (Eds.). (1993). Cognitive issues in motor expertise (Vol. 102). Elsevier.

  • Starkes, J. L., Payk, I., Jennen, P., & Leclair, D. (1993). A stitch in time: Cognitive issues in microsurgery. Advances in Psychology, 102, 225–240.

    Article  Google Scholar 

  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.

    Article  Google Scholar 

  • Teteris, E., Fraser, K., Wright, B., & McLaughlin, K. (2012). Does training learners on simulators benefit real patients? Advances in Health Sciences Education, 17(1), 137–144.

    Article  Google Scholar 

  • Thorndike, E. L., & Woodworth, R. S. (1901a). The influence of improvement in one mental function upon the efficiency of other functions II. The estimation of magnitudes. Psychological Review, 8(4), 384.

    Article  Google Scholar 

  • Thorndike, E. L., & Woodworth, R. S. (1901b). The influence of improvement in one mental function upon the efficiency of other functions: III. Functions involving attention, observation and discrimination. Psychological Review, 8(6), 553.

    Article  Google Scholar 

  • Van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177.

    Article  Google Scholar 

  • Wadman, W. J., Denier van der Gon, J. J., Geuze, R. H., & Mol, C. R. (1979). Control of fast goal-directed arm movements. Journal of Human Movement Studies, 5(1), 3–17.

    Google Scholar 

  • Williams, I. D., & Rodney, M. (1978). Intrinsic feedback, interpolation, and the closed-loop theory. Journal of Motor Behavior, 10(1), 25–36.

    Article  Google Scholar 

  • Woodworth, R.S. (1899). The accuracy of voluntary movement. Psychological Review, 3 (Monograph Supplement), 1–119.

  • Woodworth, R. S., & Thorndike, E. L. (1901). The influence of improvement in one mental function upon the efficiency of other functions. (I). Psychological Review, 8(3), 247–261.

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges Ryan Brydges, Heather Carnahan, David Cook, Adam Dubrowski, Stan Hamstra, Bill Kapralos, Simon Kitto, Mahan Kulasegaram, Vicki LeBlanc, Nancy McNaughton and Geoff Norman for helpful comments and differences of opinion that were raised during an informal meeting on re-conceptualizing fidelity in simulation in healthcare education in May 2013 (Toronto, ON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. M. Grierson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grierson, L.E.M. Information processing, specificity of practice, and the transfer of learning: considerations for reconsidering fidelity. Adv in Health Sci Educ 19, 281–289 (2014). https://doi.org/10.1007/s10459-014-9504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10459-014-9504-x

Keywords

Navigation