Skip to main content

Advertisement

Log in

Modeling carbon stock dynamics under fallow and cocoa agroforest systems in the shifting agricultural landscape of Central Cameroon

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

With increasing concerns raised by climate change, understanding biological processes within cocoa (Theobroma cacao L.) agroforest (CAF) and fallow systems is a prerequisite for developing actions related to emission reduction in the shifting agricultural landscape of Cameroon. Carbon (C) stocks and accretion were assessed and modeled in various C components (large trees, small trees, dead wood, litter, roots, soil, and total C) of fallow and CAF systems along a 50-year chronosequence. Several functions were empirically fitted to a time series of C stocks. Large tree, soil, and total C stocks were best described by a logistic growth function while that for small trees by a rational quadratic function. The best-fitted functions explained 72–96 % of C stock accumulation over time. Two metrics describing C stock accretion were derived from these functions: the point of maximum C growth and the C growth coefficient (GC). The rate of maximum growth of total C stock was reached after 12–13 years in both fallow and CAF, with maximum GCs of 6.9 and 6.3 Mg C ha−1 year−1, respectively. Over the 50-year period, the GCs of total C stocks varied between 0.2 and 6.9 Mg C ha−1 year−1, with quick accumulation within the first decade that then slowed until it levelled off after 45 years. Over a period of about 30 years, both systems sequestered a total of ~200 Mg C ha−1. This indicates that cocoa agroforests, a main source of income for local populations, can also provide significant climate change mitigation services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Aryal KP, Kerkhoff EE, Maskey N, Sherchan R (2010) Shifting cultivation in the sacred Himalayan landscape: a case study in the Kanchenjunga conservation area. ©, 1st edn. WWF Nepal, Nepal

    Google Scholar 

  • Asare R, Sonii D. (2010) Planting, replanting, and trees diversification in cocoa systems. Learning about sustainable cocoa production: a guide for participatory farmer training. Manual N°2. Forest and Landscape, Denmark

  • ASB (2012) Reduced emissions from all land uses: REALU 2 technical report phase II, year 2. IITA-Cameroon

  • Bartlett JE, Kotrlik JW, Higgings CC (2001) Organizational research: determining appropriate sample size in survey research. Inf Technol Learn Perform J 19(1):43–50

    Google Scholar 

  • Beer J, Bonnemann A, Chavez W, Fassbender HW, Imbach AC, Martel I (1990) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliadora) or poro (Erythrina poeppigiana) in Costa Rica. V. Productivity indices, organic material models and sustainability over ten years. Agrofor Syst 12:229–249

    Article  Google Scholar 

  • Bisseleua DHB (2007) Ecological, social and economic determinants in cocoa production systems in southern Cameroon. Program for agricultural sciences in Goettingen. Georg-August-University Göttingen, Göttingen

    Google Scholar 

  • Blanc L, Echard M, Herault B, Bonal D, Marcon E, Chave J, Baraloto C (2005) Dynamics of aboveground carbon stocks in a selectively logged tropical forest. Ecol Appl 19:1397–1404

    Article  Google Scholar 

  • Carsan S, Orwa C, Harwood C, Kindt R, Stroebel A, Neufeldt H, Jamnadass R (2012) African wood density database. World Agroforestry Centre, Nairobi

    Google Scholar 

  • Cerdán CR, Rebolledo MC, Soto G, Rapidel B, Sinclair FL (2012) Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agric Syst 110:119–130

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JA, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stock and balance in tropical forest. Oecological 145(1):87–99

    Article  CAS  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Chiti T, Grieco E, Perugini L, Rey A, Valentini R (2014) Effect of replacement of tropical forests with tree plantation on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil 375:47–59

    Article  CAS  Google Scholar 

  • Dawoe E (2009) Conversion of natural forest to cocoa agroforest in lowland humid Ghana: impact on plant biomass production, organic carbon and nutrient dynamics. PhD. thesis, Kwame Nkrumah University of science and technology, Ghana

  • Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR 43

  • Djomo AN, Ibrahima A, Saborowski J, Gravenhort G (2010) Allometric equations for biomass estimation in Cameroon an pan moist tropical equations including biomass data from Africa. For Ecol Manag 260:1873–1885

    Article  Google Scholar 

  • Duguma B, Gochowski J, Bakala J (2001) Smallholder cacao (Theobroma cacao Linn.) cultivation in agroforestry system of west and Central Africa: challenges and opportunities. Agrofor Syst 51:117–118

    Article  Google Scholar 

  • Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) (2006) Guidelines for national greenhouse gas inventories. Institute for Global Environmental strategies, Japan

    Google Scholar 

  • Ekoungoulou R, Liu X, Ifo SA, Loumeto JJ, Folega F (2014) Carbon stock estimation in secondary forest and gallery forest of Congo using allometric equations. Int J Sci Technol Res 3(3):465–474

    Google Scholar 

  • Ewane ESN (2012) Ecologie et caracterisation des agroforets a base de cacaoyer du departement de la Meme (Sud-Ouest Cameroun). Departement de biologie et de physiologie vegetale. Université de Yaounde I, p 89

  • FAO-ISRIC (1998) World reference base for soil resources. FAO, Rome

    Google Scholar 

  • Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P (2013) Tree allometry in Central Africa: testing the validity of Pantropical multi-species allometric equations for estimating biomass and carbob stocks. Forest Ecol Manag 305:29–37

    Article  Google Scholar 

  • Field A (2009) Discovering statistics using SPSS, 3rd edn. SAGE, London

    Google Scholar 

  • Fonseca W, Benayas JMR, Alice FE (2011) Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For Ecol Manag 262:1400–1408

    Article  Google Scholar 

  • Forys U, Marciniak-Czochra A (2003) Logistic equations in tumour growth modeling. Int J Appl Math Comput Sci 13:317–325

    Google Scholar 

  • Fujisaka S, Castilla C, Escobar G, Rodrigues V, Veneklaas EJ, Thomas R, Fisher M (1998) The effects of forest conversion on annual crops and pastures: estimates of carbon emissions on plant species loss in a Brazilian Amazon colony. Agric Ecosyst Environ 69:17–26

    Article  Google Scholar 

  • Gama-Rodrigues EF, Nair PKR, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ Manag 45:274–283

    Article  Google Scholar 

  • Georges SJ, Harper RJ, Hobbs RJ, Tibbett M (2012) A sustainable agricultural landscape for Australia: a review of interlacing carbonsequestration, biodiversity and salinity management in agroforestry systems. Agric Ecosyst Environ 163:28–36

    Article  Google Scholar 

  • Guo J, Zhou C (2007) Greenhouse gas emissions and mitigation measures in Chinese agroecosystems. Agric For Meteorol 142:270–277

    Article  Google Scholar 

  • Hairiah K, Dewi S, Agus F, Velarde S, Ekadinata A, Rahayu S, van Noordwijk M (2010) Measuring carbon stocks across land use systems: a manual. World Agroforestry Centre (ICRAF), Bogor

    Google Scholar 

  • Harris JW, Stocker H (1998) Handbook of mathematics and computational science. Springer, New York

    Book  Google Scholar 

  • Hashimoto T, Kojima K, Tange T, Sasaki S (2000) Changes in carbon storage in fallow forests in the tropical lowlands of Borneo. For Ecol Manag 126:331–337

    Article  Google Scholar 

  • Heanes DL (1984) Determination of organic C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun Soil Sci Plant Anal 15:1191–1213

    Article  CAS  Google Scholar 

  • Hergoualc’h K, Blanchart E, Skiba U, Hénault C, Harmand JM (2012) Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agric Ecosyst Environ 148:102–110

    Article  Google Scholar 

  • Hyams DG (2014a) CurveExpert professional documentation. Release 2.0.4

  • Hyams DG (2014b) GraphExpert professional documentation. Release 1.1.3

  • IBM (2010) IBM SPSS statistics base 19. © Copyright SPSS Inc., pp 330

  • Ickowitz A (2006) Shifting cultivation and deforestation in Tropical Africa: critical reflections. Dev Change 37:599–626

    Article  Google Scholar 

  • Isaac ME, Gordon AM, Thevathasan N, Oppong SK, Quashie-Sam J (2005) Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agrofor Syst 65:23–31

    Article  Google Scholar 

  • Isaac ME, Timmer VR, Quashie-Sam SJ (2007) Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutr Cycl Agroecosyst 78:155–165

    Article  Google Scholar 

  • Israel GD (2012) Determining sample size. PEOD6. University of Florida, Gainesville

    Google Scholar 

  • Jørgensen SE (1994) Models as instruments for combination of ecological theory and environment practice. Ecol Model 75–76:5–20

    Article  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10

    Article  Google Scholar 

  • Juo ASR, Manu A (1996) Chemical dynamics in slash-and-burn agriculture. Agric Ecosyst Environ 58:49–60

    Article  Google Scholar 

  • Kafle G (2011) An overview of shifting cultivation with reference to Nepal. Int J Biodivers Conserv 3:147–154

    Google Scholar 

  • Kanmegne J, Smaling EMA, Brussaard L, Gansop-Kouomegne A, Boukong A (2006) Nutrient flows in smallholder production systems in the humid forest zone of southern Cameroon. Nutr Cycl Agroecosys 76:233–248

    Article  Google Scholar 

  • Kearsley E, Haulleville T, Hufkens K, Kidimbu A, Toirambe B, Baert G, Huygens D, Kebede Y, Defourny P, Bogaert J, Beeckman H, Steppe K, Boeckx P, Verbeeck H (2013) Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat Commun 4:1–8

    Article  Google Scholar 

  • Kenzo T, Ichie T, Hattori D, Kendawang JJ, Sakurai K, Ninomiya I (2010) Changes in above-and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia. For Ecol Manag 260:875–882

    Article  Google Scholar 

  • Kiyono Y, Hastaniah (2005) Patterns of slash-and-burn land use and their effects on forest succession—swidden-land forests in Borneo. Bull FFPRI 4:259–282

    Google Scholar 

  • Kotto-Same J, Woomer PL, Appolinaire M, Zapfack L (1997) Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agric Ecosyst Environ 65:245–256

    Article  Google Scholar 

  • Kumar BM, Nair PKR (2011) Carbon sequestration potential of agroforestry systems. Springer, Dordrecht

    Book  Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Ann Rev Environ Resour 28:05–41

    Article  Google Scholar 

  • Larson-Hall J (2010) A guide to doing statistics in second language research using SPSS. Routledge, New York

    Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo KM-N, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana J-R, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KS-H, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Wöll H (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Magne AN, Ewane-Nonga N, Yemefack M, Robiglio V (2014) Profitability and implication of cocoa intensification on carbon emission in southern Cameroon. Agrofor Syst 88(6):1133–1142

    Article  Google Scholar 

  • Marín-Spiotta E, Cusack DF, Ostertag R, Silver WL (2008) Trends in above and belowground carbon with forest regrowth after agricultural abandonment in the neotropics. In: Myster RW (ed) Post-agricultural succession in the Neotropics. Springer, NewYork, pp 22–72

    Chapter  Google Scholar 

  • Matis JH, Al-Muhammed MJ (2010) Theory and application of the logistic probability density function as a population growth model. Damascus Univ J Basics Sci 26(1):9–19

    Google Scholar 

  • Mbow C, Smith P, Skole DL, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14

    Article  Google Scholar 

  • Minang PA, Duguma LA, Bernard F, Mertz O, Van Noordwijk M (2014) Prospects for agroforestry in REDD + landscapes in Africa. Curr Opin Environ Sustain 6:78–82

    Article  Google Scholar 

  • Mokany K, Raison J, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Ndongo NGK (2008) Le cycle du carbone en domaine tropical humide : Exemple du bassin versant forestier du Nyong au sud Cameroun. Université de Toulouse III - Paul Sabatier (Thèse de Doctorat), Toulouse

    Google Scholar 

  • Ngo KM, Turner BL, Muller-Landau HC, Davies SJ, Larjavaara M, Hassan NF, Lum S (2013) Carbon stocks in primary and secondary tropical forests in Singapore. For Ecol Manag 296:81–89

    Article  Google Scholar 

  • Njomgang R, Yemefack M, Nounamo L, Moukam A, Kotto-Same J (2011) Dynamics of shifting agricultural systems and organic carbon sequestration in Southern Cameroon. Tropicultura 29:176–182

    Google Scholar 

  • Norgrove L, Hauser S (2013) Carbon stocks in shaded Theobroma cacao farms and adjacent secondary forests of similar age in Cameroon. Trop Ecol 54:15–22

    Google Scholar 

  • Nounamo L, Yemefack M (2001) Farming system in the evergreen forest of southern Cameroon: shifting cultivation and soil degradation. Tropenbos Cameroon Document 8. The Tropenbos Foundation, Wageningen, pp 62

  • Pauwels JM, Ranst VE, Verloo M, Mvondo ze A (1992) Manuel de laboratoire de pédologie: Méthodes d’analyses des sols et de plantes, équipements, gestion des stocks de verrerie et de produits chimiques. Publication Agricole 28

  • Prodan M, Peters R, Cox F, Real P (1997) Mensura forestal. Serie de investigación y evaluación en desarrollo sostenible. Costa Rica, San José

  • Rahman SA, Rahman MF, Sunderland T (2011) Causes and consequences of shifting cultivation and its alternative in the hill tracts of eastern Bangladesh. Agrofor Syst 84(2):141–155

    Article  Google Scholar 

  • Saj S, Jagoret P, Ngogue HT (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor Syst 87:1309–1320

    Article  Google Scholar 

  • Schroth G, Bede LC, Paiva AO, Cassano CR, Amorim AM, Faria D, Mariano-Neto E, Martini AMZ, Sambuichi SHR, Lôbo RN (2013) Contribution of agroforests to landscape carbon storage. Mitig Adapt Strateg Glob Change 20(7):1175–1190

    Article  Google Scholar 

  • Seidenberg C, Mertz O, Kias MB (2003) Fallow, labour and livelihood in shifting cultivation: implications for deforestation in northern Lao PDR. Dan J Geogr 103:71–80

    Article  Google Scholar 

  • Silatsa TFB, Yemefack M, Dameni H (2015) Variabilité des stocks de carbone en zone forestière du Cameroun; Approche évaluative dans le paysage agricole itinérant de la commune d’Ayos. Edition Universitaires Européenenne, Deutschland/Allemagne

  • Smiley GL, Kroschel J (2008) Temporal change in carbon stocks of cocoa-gliricidia agroforests in Central Sulawesi, Indonesia. Agrofor Syst 73:219–231

    Article  Google Scholar 

  • Somarriba E, Cerda R, Orozco L, Cifuentes M, Davila H, Espin H, Mavisoy H, Avila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stock and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57

    Article  Google Scholar 

  • Sonwa DJ, Nkongmeneck BA, Weise SF, Tchatat M, Adesina AA, Jansens MJJ (2007) Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodivers Conserv 16(8):2385–2400

    Article  Google Scholar 

  • Sonwa DJ, Weise SF, Coulibaly ON (2009) Contribution of traditional knowledge developed by farmers to control pests and diseases in cocoa agroforests in Southern Cam eroon. IUFRO World Ser 23:14–20

    Google Scholar 

  • Sunderlin WD, Ndoye O, Bikié H (2000) Economic crisis, farming systems and forest cover change in the humid forest zone of Cameroon. Int For Rev 2:173–181

    Google Scholar 

  • Thangata PH, Hildebrand PE (2012) Carbon stock and sequestration potential of agroforestry systems in smallholder agroecosystems of sub-Saharan Africa: mechanisms for ‘reducing emissions from deforestation and forest degradation’ (REDD+). Agric Ecosyst Environ 158:172–183

    Article  Google Scholar 

  • Thrupp LA, Hecht S, Browder J (1997) The diversity and dynamics of shifting cultivation: myths, realities, and policy implications. World Resources Institute, Washington

    Google Scholar 

  • Yemefack M (2005) Modelling and monitoring soil and land use dynamics within shifting agricultural landscape mosaic systems in Southern Cameroon. PhD. Thesis, ITC Enschede and Utrecht University, Netherland, p 194

  • Yemefack M, Jetten VG, Rossiter DG (2006a) Developing a Minimum Data Set for characterizing soil dynamics under shifting cultivation systems. Soil Tillage Res 86:84–98

    Article  Google Scholar 

  • Yemefack M, Rossiter DG, Jeten VG (2006b) Empirical modelling of soil dynamics along a chronosequence of shifting cultivation system in southern Cameroon. Geoderma 133:380–397

    Article  CAS  Google Scholar 

  • Yemefack M, Alemagi D, Duguma LA, Minang PA, Tchoundjeu Z (2013) Linking development pathways and emission reduction at local levels: an analysis of feasibility in the Efoulan municipality, Cameroon. ASB Policy Brief No 39, ASB Partnership for the Tropical Forest Margins Nairobi, Kenya

  • Zapfack L, Engwald S, Sonke B, Achoundong G, Ba Madong (2002) The impact of land conversion on plant biodiversity in the forest zone of Cameroon. Biodivers Conserv 11:2047–2061

    Article  Google Scholar 

Download references

Acknowledgments

The study was conducted within the framework of the ASB partnership for tropical forest margin in Cameroon, with the financial support of NORAD. Authors gratefully acknowledge support from the chiefs of the various villages during the sampling campaign. Thanks to Rose Ndango for laboratory analysis, Pr. Mathieu Ngouajio, Suzanne Mogue, the two anonymous reviewers, and the editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis B. T. Silatsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silatsa, F.B.T., Yemefack, M., Ewane-Nonga, N. et al. Modeling carbon stock dynamics under fallow and cocoa agroforest systems in the shifting agricultural landscape of Central Cameroon. Agroforest Syst 91, 993–1006 (2017). https://doi.org/10.1007/s10457-016-9973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-9973-4

Keywords

Navigation