Skip to main content
Log in

Canopy conductance and stand transpiration of Populus simonii Carr in response to soil and atmospheric water deficits in farmland shelterbelt, Northwest China

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Populus simonii Carr trees are the most abundant species in Xinjiang farmland shelterbelt. They played an important role in protecting farmland ecosystem. Their stand transpiration rates and canopy conductances ranged from 0.14 to 1.02 cm d−1 and from 1.19*10−3 to 8.99*10−5 m s−1, respectively, during the 2014 growing season. Transpiration rate was showed quadratic polynomial regression with vapor pressure deficit (VPD) and air temperature (T), and exponential relationship with solar radiation (Rn). Furthermore, transpiration peaked at VPD, T, and Rn were 2.1 kPa, 23 °C, and 200 W m−2, respectively. Canopy conductance increased exponentially with the increasing Rn, whereas decreased logarithmically with the increasing VPD. Besides, transpiration increased with the increasing T and VPD ,and decreased sharply with the increasing soil water deficit. Finally, canopy conductance increased with the decreasing atmospheric water deficit. These results are not only providing the basis for more detailed analyses of water physiology and growth of Populus simonii Carr trees for the later application of a climate-driven process model, but also might have implications for farmland shelterbelt management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen CD et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Anderegg WRL, Berry JA, Field CB (2012) Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci 17:693–700

    Article  CAS  PubMed  Google Scholar 

  • Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree Mortality triggered by drought and temperature stress nature. Clim Change 3:30–36

    Article  Google Scholar 

  • Bernier P, Bréda N, Granier A, Raulier F, Mathieu F (2002) Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum  Marsh.) using sap flow density measurements. For Ecol Manage 163:185–196

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. doi:10.1126/science.1155121

    Article  CAS  PubMed  Google Scholar 

  • Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Forest Sci 63:625–644. doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. An introduction to environmental biophysics, Second edition

    Book  Google Scholar 

  • Chang X, Zhao W, Zhang Z, Su Y (2006) Sap flow and tree conductance of shelter-belt in arid region of China. Agric Forest Meteorol 138:132–141

    Article  Google Scholar 

  • Chen L, Wei W, Fu B, Lü Y (2007) Soil and water conservation on the Loess Plateau in China: review and perspective. Prog Phys Geogr 31:389–403

    Article  CAS  Google Scholar 

  • Chen LX, Zhang ZQ, Ewers BE (2012) Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PLoS One 7:e47882. doi:10.1371/journal.pone.0047882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LX, Zhang ZQ, Zha TG, Mo KL, Zhang Y, Fang XR (2014) Soil water affects transpiration response to rainfall and vapor pressure deficit in poplar plantation. New Forest 45:235–250. doi:10.1007/s11056-014-9405-0

    Article  Google Scholar 

  • Cheng X, Huang M, Shao M (2007) Vertical distribution of representative plantation’s fine root in wind-water erosion crisscross region, Shenmu

  • Chirino E, Bellot J, Sánchez JR (2011) Daily sap flow rate as an indicator of drought avoidance mechanisms in five mediterranean perennial species in semi-arid southeastern Spain. Trees 25:593–606

    Article  Google Scholar 

  • Dong X, Zhang Y, Cui W, Xun B, Yu B, Ulgiati S, Zhang X (2011) Emergy-based adjustment of the agricultural structure in a low-carbon economy in manas county of China. Energies 4:1428–1442. doi:10.3390/en4091428

    Article  Google Scholar 

  • Dzikiti S, Verreynne J, Stuckens J, Strever A, Verstraeten W, Swennen R, Coppin P (2010) Determining the water status of Satsuma mandarin trees [Citrus Unshiu Marcovitch] using spectral indices and by combining hyperspectral and physiological data. Agric For Meteorol 150:369–379

    Article  Google Scholar 

  • Fan ZZD, Zhu J, Jiang F, Yu X (2002) Advance in Characteristics of Ecological Effects of Farmland Shelterbelts. Journal of Soil and Water Conservation 16(4):130–133

    Google Scholar 

  • Fernández ME, Gyenge J, Schlichter T (2009) Water flux and canopy conductance of natural versus planted forests in Patagonia. South America Trees 23:415–427

    Article  Google Scholar 

  • Ghimire CP, Lubczynski MW, Bruijnzeel LA, Chayarro-Rincon D (2014) Transpiration and canopy conductance of two contrasting forest types in the Lesser Himalaya of Central Nepal. Agric For Meteorol 197:76–90. doi:10.1016/j.agrformet.2014.05.012

    Article  Google Scholar 

  • Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320

    Article  CAS  PubMed  Google Scholar 

  • Granier A, Bréda N, Biron P, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283

    Article  Google Scholar 

  • Holder CD (2012) The relationship between leaf hydrophobicity, water droplet retention, and leaf angle of common species in a semi-arid region of the western United States. Agric For Meteorol 152:11–16

    Article  Google Scholar 

  • Hu M, Kang SZ, Zhang JH, Li FS, Du TS, Tong L (2012) Potential use of saline water for irrigating shelterbelt plants in the arid region. Irrigation Drain 61:107–115. doi:10.1002/ird.619

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95. doi:10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration—scaling up from leaf to region. Adv Ecol Res 15:1–49. doi:10.1016/s0065-2504(08)60119-1

    Article  Google Scholar 

  • Jonard F, Andre F, Ponette Q, Vincke C, Jonard M (2011) Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003. J Hydrol 409:371–381. doi:10.1016/j.jhydrol.2011.08.032

    Article  Google Scholar 

  • Jung EY, Otieno D, Kwon H, Berger S, Hauer M, Tenhunen J (2014) Influence of elevation on canopy transpiration of temperate deciduous forests in a complex mountainous terrain of South Korea. Plant Soil 378:153–172. doi:10.1007/s11104-013-2019-z

    Article  CAS  Google Scholar 

  • Kumagai T et al (2005) Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agric For Meteorol 135:110–116. doi:10.1016/j.agrformet.2005.11.007

    Article  Google Scholar 

  • Kume T, Takizawa H, Yoshifuji N, Tanaka K, Tantasirin C, Tanaka N, Suzuki M (2007) Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand. For Ecol Manage 238:220–230

    Article  Google Scholar 

  • Lagergren F, Lindroth A (2002) Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric For Meteorol 112:67–85. doi:10.1016/s0168-1923(02)00060-6

    Article  Google Scholar 

  • Li Wei SJ, Feng Qi, Tengfei YU (2013) Response of transpiration to water vapour pressure defferential of Populus euphratica. Journal of Desert Research 33:1377–1384

    Google Scholar 

  • Li Xianyue YP, Ren Shumei, Ren Liang (2010) Characteristics and simulation of canopy conductnce of cherry Acta Ecologica Sinica:300-308

  • Li Zheng NL-h, Yuan Feng-hui,Guan Dexin.Wang Anzhi,Jin Changjie,Wu Jiabing (2012) Canopyconductancecharacteristicsof poplarinagroforestrysysteminwest LiaoningProvinceof Northeast China ChineseJournal of Applied Ecology:2975-2982

  • Licata JA, Gyenge JE, Fernandez ME, Schlichter TA, Bond BJ (2008) Increased water use by ponderosa pine plantations in northwestern Patagonia Argentina compared with native forest vegetation. For Ecol Manag 255:753–764. doi:10.1016/j.foreco.2007.09.061

    Article  Google Scholar 

  • Lu P, Urban L, Zhao P (2004) Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. ACTA BOTANICA SINICA-ENGLISH EDITION 46:631–646

    Google Scholar 

  • Luis V, Jiménez M, Morales D, Kucera J, Wieser G (2005) Canopy transpiration of a Canary Islands pine forest. Agric For Meteorol 135:117–123

    Article  Google Scholar 

  • McJannet D, Fitch P, Disher M, Wallace J (2007) Measurements of transpiration in four tropical rainforest types of north Queensland. Australia Hydrological Processes 21:3549–3564

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19(19):205–234

    CAS  PubMed  Google Scholar 

  • Naithani KJ, Ewers BE, Pendall E (2012) Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem. J Hydrol 464:176–185. doi:10.1016/j.jhydrol.2012.07.008

    Article  Google Scholar 

  • Pfautsch S, Bleby TM, Rennenberg H, Adams MA (2010) Sap flow measurements reveal influence of temperature and stand structure on water use of Eucalyptus regnans forests Forest Ecology and Management 259:1190–1199

    Google Scholar 

  • Samuelson LJ, Stokes TA, Coleman MD (2007) Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides. Tree Physiol 27:765–774

    Article  PubMed  Google Scholar 

  • She DLX, xia Y, shao MA, peng SZ, Yu S (2013) Transpiration and canopy conductance of Caragana korshinskii trees in response to soil moisture in sand land of China. Agrofor Syst 87:667–678. doi:10.1007/s10457-012-9587-4

    Article  Google Scholar 

  • Shen Yanli, Yang Shixiu, Xinjie D (1999) Analysis of the function of Protection Forest Drainage and Water Consumption J Irrigation Drain:38-40

  • Sommer R, Sá TD, Vielhauer K, Araújo ACD, Fölster H, Vlek PL (2002) Transpiration and canopy conductance of secondary vegetation in the eastern Amazon. Agric For Meteorol 112:103–121

    Article  Google Scholar 

  • Sun LGW, Wang Y, Xu L, Xiong W (2011) Simulations of Larix principis rupprechtii stand mean canopy stomatal conductance and its responses to environmental factors. Chin J Ecol:2122-2128

  • Tanaka K et al. (2003) Transpiration peak over a hill evergreen forest in northern Thailand in the late dry season: assessing the seasonal changes in evapotranspiration using a multilayer model Journal of Geophysical Research: Atmospheres (1984–2012) 108

  • Tao W (2000) Land use and sandy desertification in the north China. Chinese J Agrometeorol 20:103–107

    Google Scholar 

  • Wang T, Zhu Z, Wu W (2002) Sandy desertification in the north of China Science in China Series D. Earth Sci 45:23–34

    Google Scholar 

  • Wang R, Ma L, Xi R, Xu J (2006) Fluctuation of Acer truncatum sap flow in rapid growth season and relevant variables. Chin J Ecol 2:231–237

    Google Scholar 

  • Wanvestraut RH, Jose S, Nair PKR, Brecke BJ (2004) Competition for water in a pecan (Carya illinoensis K. Koch)—cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Agrofor Syst 60:167–179. doi:10.1023/B:AGFO.0000013292.29487.7a

    Article  Google Scholar 

  • Whitley R, Zeppel M, Armstrong N, Macinnis-Ng C, Yunusa I, Eamus D (2008) A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest Plant and Soil 305:35–47. doi:10.1007/s11104-007-9399-x

    CAS  Google Scholar 

  • Whitley R, Medlyn B, Zeppel M, Macinnis-Ng C, Eamus D (2009) Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance. J Hydrol 373:256–266. doi:10.1016/j.jhydrol.2009.04.036

    Article  Google Scholar 

  • Xi B, Li G, Bloomberg M, Jia L (2014) The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosa in the North China Plain. Australian Forestry 77:159–167

    Article  Google Scholar 

  • Xiubin H, Zhanbin L, Mingde H, Keli T, Fengli Z (2003) Down-scale analysis for water scarcity in response to soil–water conservation on Loess Plateau of China. Agric Ecosyst Environ 94:355–361

    Article  Google Scholar 

  • Yue G, Zhao H, Zhang T, Zhao X, Niu L, Drake S (2008) Evaluation of water use of Caragana microphylla with the stem heat-balance method in Horqin Sandy Land Inner Mongolia, China. Agric For Meteorol 148:1668–1678

    Article  Google Scholar 

  • Yunusa IAM, Walker RR, Loveys BR, Blackmore DH (2000) Determination of transpiration in irrigated grapevines: comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrig Sci 20:1–8. doi:10.1007/pl00006714

    Article  Google Scholar 

  • Yuwei ZHU, Yonghong WANG, Qimin CHEN, Weijiang WU, Fenfei ZUO (2010) Soil-coerced effect of farmland shelterbelt of Xinjiang 150 regiment. Protection Forest Science and Technology (4):9-11

  • Zamora DS, Jose S, Nair PKR (2007) Morphological plasticity of cotton roots in response to interspecific competition with pecan in an alleycropping system in the southern United States. Agrofor Syst 69:107–116. doi:10.1007/s10457-006-9022-9

    Article  Google Scholar 

  • Zeppel MJB, Macinnis-Ng CMO, Yunusa IAM, Whitley RJ, Earnus D (2008) Long term trends of stand transpiration in a remnant forest during wet and dry years. J Hydrol 349:200–213. doi:10.1016/j.jhydrol.2007.11.001

    Article  Google Scholar 

  • Zhou H, Li X, Fan H, Wang X, Tan H, Li A (2004) Physiological characteristics of several Caragana shrub species under extreme conditions. J Desert Res 25:182–190

    Google Scholar 

  • Zweifel R, Häsler R (2001) Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiol 21:561–569

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (41371115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FU, S., Sun, L. & Luo, Y. Canopy conductance and stand transpiration of Populus simonii Carr in response to soil and atmospheric water deficits in farmland shelterbelt, Northwest China. Agroforest Syst 91, 1165–1180 (2017). https://doi.org/10.1007/s10457-016-0002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-0002-4

Keywords

Navigation