Skip to main content

Advertisement

Log in

Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Agroforestry systems (AFS) play a major role in the sequestration of carbon (C). The objectives of this study were to quantify the organic C stocks in the above- and below-ground tree biomass and in the soil in a cattle-farming system with live fences (CFSLF) of Gliricidia sepium and to compare the levels with those of a cattle-farming system based on a grass monoculture (CFSGM). The methodology included a forest inventory in nine randomly assigned plots and the destructive sampling of G. sepium 32 trees, measuring for each tree the diameter at breast height (DBH), stem height, total tree height, branch weight, leaf weight and coarse root weight. In addition, we measured grass biomass, collected litterfall and collected soil samples at depths of 0–10, 10–20 and 20–30 cm in the plots. A logarithmic model was developed to quantify the above- and below-ground tree biomass. The soil organic matter was determined by the dry combustion method. The total carbon stored in the CFSLF was 119.82 Mg C ha−1, with the G. sepium trees contributing 5.7 % of the total C (6.48 Mg C ha−1). The CFSGM stored 113.34 Mg C ha−1. The grass biomass stored 15.32 Mg C ha−1 year−1 in the CFSGM and 15.68 Mg C ha−1 year−1 in the CFSLF, and the litterfall in the CFSLF stored 0.205 Mg C ha−1 year−1. Despite the modest contribution of G. sepium trees to the C storage, the total carbon accumulated in the CFSLF and CFSGM was similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey N, Motavalli P, Udawatta R, Nelson K (2009) Soil CO2 emissions in agricultural watersheds with agroforestry and grass contour buffer strips. Agrofor Syst 77:143–158

    Article  Google Scholar 

  • Bambrick AD, Whalen JK, Bradley RL, Cogliastro A, Gordon AM, Olivier A, Thevathasan NV (2010) Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor Syst 79:343–353

    Article  Google Scholar 

  • Ben-Dor E, Banin A (1989) Determination of organic matter content in arid-zone soils using a simple “loss-on.ignition” method. Commun Soil Sci Plant Anal 20:1675–1695

    Article  Google Scholar 

  • Berninger F, Salas E (2003) Biomass dynamics of Erythrina lanceolata as influenced by shoot-pruning intensity in Costa Rica. Agrofor Syst 57:19–28

    Article  Google Scholar 

  • De Jong B, Anaya C, Masera O, Olguín M, Paz F, Etchevers J, Martínez RD, Guerrero G, Balbontín C (2010) Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For Ecol Manag 260:1689–1701

    Article  Google Scholar 

  • Díaz-Romeu R, Hunter A (1982) Metodología de muestreo de suelos, análisis químico de suelos y tejido vegetal y de investigaciones en invernadero. Serie Materiales de Enseñanza N 12, CATIE. Turrialba, Costa Rica

  • Dieter M, Elsasser P (2002) Carbon stocks and carbon stock changes in the tree biomass of Germany’s forests. Forstwiss Centralbl 121:195–210

    Article  CAS  Google Scholar 

  • Djomo AN, Knohl A, Gravenhorst G (2011) Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. For Ecol Manag 261:1448–1459

    Article  Google Scholar 

  • Dube F, Espinosa M, Stolpe NB, Zagal E, Thevathasan NV, Gordon AM (2012) Productivity and carbon storage in silvopastoral systems with Pinus ponderosa and Trifolium spp., plantations and pasture on an Andisol in Patagonia, Chile. Agrofor Syst 86:113–128

    Article  Google Scholar 

  • Eldridge D, Wong V (2005) Clumped and isolated trees influence soil nutrient levels in an Australian temperate box woodland. Plant Soil 270:331–342

    Article  CAS  Google Scholar 

  • Enríquez JF, Hernández GA, Quero AR (2005) Agronomic evaluation of twenty ecotypes of Leucaena spp. for acid soil conditions in Mexico. Trop Grassl 39(4):230

    Google Scholar 

  • Ganjegunte GK, Vance GF, Preston CM, Schuman GE, Ingram LJ, Stahl PD (2005) Soil organic carbon composition in a northern mixed-grass prairie: effects of grazing. Soil Sci Soc Am J 69:1746–1756

    Article  CAS  Google Scholar 

  • García E (1988) Modificaciones al sistema de clasificación de Köppen. Offset Larios S.A, México

    Google Scholar 

  • Garrett HE, Kerley MS, Ladyman KP, Walter WD, Godsey LD, Van Sambeek JW, Brauer DK (2004) Hardwood silvopasture management in North America. Agrofor Syst 61:21–33

    Google Scholar 

  • Gibbons P, Lindenmayer DB, Fischer J, Manning AD, Weinberg A, Seddon J, Ryan P, Barrett G (2008) The future of scattered trees in agricultural landscapes. Conserv Biol 2:1309–1319

    Article  Google Scholar 

  • Gómez CH, Pinto RR, Guevara HF, González RA (2010) Estimaciones de biomasa aérea y carbono almacenado en Gliricidia sepium (lam.) y Leucaena leucocephala (jacq.) y su aplicación en sistemas silvopastoriles. ITEA-Información Técnica Económica Agraria 106(4):256–270

    Google Scholar 

  • Guo LB, Halliday MJ, Gifford RM (2006) Fine root decomposition under grass and pine seedlings in controlled environmental conditions. Appl Soil Ecol 33:22–29

    Article  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Harvey CA, Villanueva C, Villacis J (2005) Contribution of live fences to the ecological integrity of agricultural landscapes. Agric Ecosyst Environ 111:200–230

    Article  Google Scholar 

  • Kalra YP, Maynard DG (1991) Methods manual for forest soil and plant analysis. For. Can., Northwest Reg., North. For. Cent., Edmonton, Alberta. Inf. Rep. NOR-X-319, 116p

  • Kaonga ML, Bayliss-Smith TP (2009) Carbon pools in tree biomass and the soil in improved fallows in eastern Zambia. Agrofor Syst 76:37–51

    Article  Google Scholar 

  • Matos ES, Freese D, Mendonca ES, Slazak A, Reinhard FH (2011) Carbon, nitrogen and organic C fractions in topsoil affected by conversion from silvopastoral to different land use systems. Agrofor Syst 81:203–211

    Article  Google Scholar 

  • McElhinny C, Lowson C, Schneemann B, Pachon C (2009) Variation in litter under individual tree crowns: implications for scattered trees. Austral Ecol 35:87–95

    Article  Google Scholar 

  • Mesquita RCG, Workman SW, Neely CL (1998) Slow litter decomposition in a Cecropia-dominated secondary forest of Central Amazonia. Soil Biol Biochem 30(2):167–175

    Article  Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295

    Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht A, Palm C, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54

    Article  CAS  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nyakatawa EZ, Mays DA, Naka K, Bukenya JO (2011) Carbon, nitrogen, and phosphorus dynamics in a loblolly pine-goat silvopasture system in the Southeast USA. Agrofor Syst 86:129–140

    Article  Google Scholar 

  • Nygren P, Cruz P (1998) Biomass allocation and nodulation of Gliricidia sepium under two cut-and-carry forage production regimes. Agrofor Syst 41:277–292

    Article  Google Scholar 

  • Oelbermann M, Voroney RP, Thevathasan NV, Gordon AM, Kass DCL, Schlonvoigt AM (2006) Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping systems. Agrofor Syst 68:27–36

    Article  Google Scholar 

  • Page-Dumroese DS, Jurgensen MF, Brown RE, Mroz GD (1999) Comparison of methods for determining bulk densities of rocky forest soils. Soil Sci Soc Am J 63:379–383

    Article  CAS  Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan R (2006) Carbon sequestration potentials in temperate tree based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–257

    Article  Google Scholar 

  • Picard N, Saint-André L, Henry M (2012) Manual de construcción de ecuaciones alométricas para estimar el volumen y la biomasa de los árboles: del trabajo de campo a la predicción. Las Naciones Unidas para la Alimentación y la Agricultura y el Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Rome, Montpellier

  • Schoeneberger MM (2009) Agroforestry: working trees for sequestering carbon on agricultural lands. Agrofor Syst 75:27–37

    Article  Google Scholar 

  • Segura M, Kanninen M (2005) Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37(1):2–8

    Article  Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor Syst 60:123–130

    Article  Google Scholar 

  • Shibu J (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10

    Article  Google Scholar 

  • Smiley GL, Kroschel J (2008) Temporal change in carbon stocks of cocoa–gliricidia agroforests in Central Sulawesi, Indonesia. Agrofor Syst 73:219–231

    Article  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Jimenez G, De Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51

    Article  Google Scholar 

  • Tapia C, Luizäo FJ, Wandelli E, Fernandes ECM (2005) Carbon and nutrient stocks in the litter layer of agroforestry systems in central Amazonia, Brazil. Agrofor Syst 65:33–42

    Article  Google Scholar 

  • Thevathasan NV, Gordon AM (2004) Ecology of tree intercropping systems in the North temperate region: experiences from southern Ontario, Canada. Agrofor Syst 61:257–268

    Google Scholar 

  • Tumwebaze TS, Bevilacqua E, Briggs R, Volk T (2012) Soil organic carbon under a linear simultaneous agroforestry system in Uganda. Agrofor Syst 84:11–23

    Article  Google Scholar 

  • Villanueva-López G, Martínez-Zurimendi P, Ramírez-Avilés L, Casanova-Lugo F, Jarquín-Sánchez A (2014) Influence of livestock systems with live fences of Gliricidia sepium on several soil properties in Tabasco, Mexico. Cien Inv Agr 41(2):175–186

    Article  Google Scholar 

  • Wang Q, Zhang L, Li L, Bai Y, Cao J, Han X (2009) Changes in carbon and nitrogen of Chernozem soil along a cultivation chronosequence in a semi-arid grassland. Eur J Soil Sci 60:916–923

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank The College of the Southern Border for providing support to the first author during his doctoral studies in Agricultural Sciences at the University of Yucatan, Mexico. We are also grateful to the National Council of Science and Technology for the economic support provided during the research period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Martínez-Zurimendi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva-López, G., Martínez-Zurimendi, P., Casanova-Lugo, F. et al. Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico. Agroforest Syst 89, 1083–1096 (2015). https://doi.org/10.1007/s10457-015-9836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-015-9836-4

Keywords

Navigation