Skip to main content

Advertisement

Log in

Bird communities in tropical agroforestry ecosystems: an underappreciated conservation resource

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Tropical conservation and research focus primarily on protected areas and often ignore conservation values of surrounding agricultural lands. Understanding how species utilize agricultural land will maximize conservation efforts. We compared bird community composition in four habitats in northeastern Costa Rica: shade-grown cacao, live fences, riparian forest buffers, and preserved late-successional rainforest. Point counts over 2 months found 167 species from 36 families. Rainforest contained the most species unique to a habitat although richness per point was lower than in agricultural habitats. Half, 31, of the rainforest species did not occur in other habitats, while 106 species, mostly those preferring open areas, occurred in agroforest habitats but not rainforest. While agricultural habitats had fairly similar species composition to each other as determined by distance in an ordination, each also contained significant numbers, 9–30, of unique species. While intact rainforest remains central to conservation of tropical birds, agricultural lands with substantial trees, e.g., live fences, riparian buffers, and plantations with shade trees, can support a high richness of birds. These avian communities are not simply subsets of the rainforest species but include substantial numbers of unique species. Conservation contributions of these lands to species richness and complexity should be considered in conservation, and trees in these habitats preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes DKA, De Grave S (2001) Ecological biogeography of southern polar encrusting faunas. J Biogeogr 28(3):359–365

    Article  Google Scholar 

  • Bermúdez FA, Hernández CH (2004) Plan de Manejo del Parque Nacional Tortuguero. Área de Conservación Tortuguero. Ministerio de Ambiente y Energía, San Jose, Costa Rica

    Google Scholar 

  • Bierregaard R, Lovejoy T, Kapos V, Dossantos A, Hutchings R (1992) The biological dynamics of tropical rain-forest fragments. Bioscience 42(11):859–866

    Article  Google Scholar 

  • Bradshaw CJ, Sodhi NS, Brook BW (2009) Tropical turmoil: a biodiversity tragedy in progress. Front Ecol Environ 7(2):79–87

    Article  Google Scholar 

  • Cerezo A, Robbins CS, Dowell B (2009) Modified-habitat use by tropical forest-dependent birds in the Caribbean region of Guatemala. Revista de Biología Tropical 57(1/2):401–419

    PubMed  Google Scholar 

  • Chalmandrier L, Münkemüller T et al (2013) A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns. J Veg Sci 24(5):853–864

    Article  PubMed Central  PubMed  Google Scholar 

  • de Schawe CC, Durka W, Tscharntke T, Hensen I, Kessler M (2013) Gene flow and genetic diversity in cultivated and wild cacao (Theobroma cacao) in Bolivia. Am J Bot 100(11):2271–2279

    Article  Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28(1):137–167

    Article  Google Scholar 

  • Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43(2):209–218

    Article  Google Scholar 

  • Dos Anjos L, Boçon R (1999) Bird communities in natural forest patches in southern Brazil. Wilson Bull 111(3):397–414

    Google Scholar 

  • Estrada A, Coates-Estrada R (2005) Diversity of neotropical migratory landbird species assemblages in forest fragments and man-made vegetation in Los Tuxtlas, Mexico. Biodivers Conserv 14(7):1719–1734

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Meritt DA Jr (1997) Anthropogenic landscape changes and avian diversity at Los Tuxtlas, Mexico. Biodivers Conserv 6(1):19–43

    Article  Google Scholar 

  • Eva HD, Achard F et al (2012) Forest cover changes in tropical South and Central America from 1990 to 2005 and related carbon emissions and removals. Remote Sens 4(5):1369–1391

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663

    Article  Google Scholar 

  • Foppen RP, Chardon JP, Liefveld W (2000) Understanding the role of sink patches in source–sink metapopulations: reed warbler in an agricultural landscape. Conserv Biol 14(6):1881–1892

    Article  Google Scholar 

  • Gardner TA, Barlow J et al (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12(6):561–582

    Article  PubMed  Google Scholar 

  • Garrigues R, Dean R (2007) The birds of Costa Rica. Comstock, Ithaca, NY

    Google Scholar 

  • Gentry AH (1990) Four neotropical rainforests. Yale University Press, New Haven, CT (Association for Tropical Biology, American Institute of Biological Sciences. Organization for Tropical Studies)

    Google Scholar 

  • Gillespie TW, Zutta BR, Early MK, Saatchi S (2006) Predicting and quantifying the structure of tropical dry forests in south Florida and the neotropics using spaceborne imagery. Glob Ecol Biogeogr 15(3):225–236

    Article  Google Scholar 

  • Greenberg R, Bichier P, Angón AC (2000) The conservation value for birds of cacao plantations with diverse planted shade in Tabasco, Mexico. Anim Conserv 3(2):105–112

    Article  Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34(4):427–433

    Article  Google Scholar 

  • Gutiérrez AG, Huth A (2012) Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspect Plant Ecol Evol Syst 14(4):243–256

    Article  Google Scholar 

  • Harvey CA, Medina A et al (2006) Patterns of animal diversity in different forms of tree cover in agricultural landscapes. J Appl Ecol 16(5):1986–1999

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42(1–3):47–58

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica

    Google Scholar 

  • Hutto RL, Pletschet SM, Hendricks P (1986) A fixed-radius point count method for nonbreeding and breeding season use. Auk 103:593–602

    Google Scholar 

  • IBM Corp. Released (2012) IBM SPSS statistics for Windows, version 21.0. IBM Corp., Armonk, NY

    Google Scholar 

  • IUCN (2014) The IUCN red list of threatened species. Version 2014.3. http://www.iucnredlist.org. Accessed 25 Jan 2015

  • Janzen DH (1988) Management of habitat fragments in a tropical dry forest: growth. Ann Mo Bot Gard 75:105–116

    Article  Google Scholar 

  • Jonsson M, Englund G, Wardle DA (2011) Direct and indirect effects of area, energy and habitat heterogeneity on breeding bird communities. J Biogeogr 38(6):1186–1196

    Article  Google Scholar 

  • Koh LP, Ghazoul J (2010) A matrix-calibrated species-area model for predicting biodiversity losses due to land-use change. Conserv Biol 24(4):994–1001

    Article  PubMed  Google Scholar 

  • Kumaraswamy S, Kunte K (2013) Integrating biodiversity and conservation with modern agricultural landscapes. Biodivers Conserv 22(12):2735–2750

    Article  Google Scholar 

  • Kylafis G, Loreau M (2011) Niche construction in the light of niche theory. Ecol Lett 14(2):82–90

    Article  PubMed  Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141(7):1731–1744

    Article  Google Scholar 

  • Laurance WF, Useche DC et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489(7415):290–294

    Article  CAS  PubMed  Google Scholar 

  • Leibold MA (1995) The niche concept revisited: mechanistic models and community context. Ecology 76(5):1371–1382

    Article  Google Scholar 

  • Lindell CA, Riffell SK et al (2007) Edge responses of tropical and temperate birds. Wilson J Ornithol 119(2):205–220

    Article  Google Scholar 

  • Livingston G, Philpott SM, Rodriguez MA (2013) Do species sorting and mass effects drive assembly in tropical agroecological landscape mosaics? Biotropica 45(1):10–17

    Article  Google Scholar 

  • Lusk CH, Kaneko T, Grierson E, Clearwater M (2013) Correlates of tree species sorting along a temperature gradient in New Zealand rain forests: seedling functional traits, growth and shade tolerance. J Ecol 101(6):1531–1541

    Article  Google Scholar 

  • Maass J (1995) Conversion of tropical dry forest to pasture and agriculture. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, MA, p 399

    Chapter  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Maitner BS, Rudgers JA, Dunham AE, Whitney KD (2012) Patterns of bird invasion are consistent with environmental filtering. Ecography 35(7):614–623

    Article  Google Scholar 

  • Mayfield MM, Boni MF, Ackerly DD (2009) Traits, habitats, and clades: identifying traits of potential importance to environmental filtering. Am Nat 174(1):E1–E22

    Article  PubMed  Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ORD. Multivariate Analysis of Ecological Data. Version 6. MjM Software, Gleneden Beach, OR, USA

    Google Scholar 

  • McIntyre S, Hobbs R (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13(6):1282–1292

    Article  Google Scholar 

  • Mendenhall CD, Daily GC, Ehrlich PR (2012) Improving estimates of biodiversity loss. Biol Conserv 151(1):32–34

    Article  Google Scholar 

  • Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509(7499):213–217

    Article  CAS  PubMed  Google Scholar 

  • Meynard CN, Devictor V, Mouillot D, Thuiller W, Jiguet F, Mouquet N (2011) Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Glob Ecol Biogeogr 20(6):893–903

    Article  Google Scholar 

  • Minitab, Inc. (2013) Minitab 16 Statistical Software. Minitab, Inc., State College, PA

    Google Scholar 

  • Moustakas A, Sakkos K et al (2009) Are savannas patch-dynamic systems? A landscape model. Ecol Model 220(24):3576–3588

    Article  Google Scholar 

  • Muhamad D, Okubo S, Miyashita T, Takeuchi K (2013) Effects of habitat type, vegetation structure, and proximity to forests on bird species richness in a forest–agricultural landscape of West Java, Indonesia. Agrofor Syst 87(6):1247–1260

    Article  Google Scholar 

  • Ospina S, Rusch GM, Pezo D, Casanoves F, Sinclair FL (2012) More stable productivity of semi-natural grasslands than sown pastures in a seasonally dry climate. PLoS ONE 7(5):e35555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Özkan K, Svenning J, Jeppesen E (2013) Environmental species sorting dominates forest-bird community assembly across scales. J Anim Ecol 82(1):266–274

    Article  PubMed  Google Scholar 

  • Pavlacky D, Anderson S (2007) Does avian species richness in natural patch mosaics follow the forest fragmentation paradigm? Anim Conserv 10(1):57–68

    Article  Google Scholar 

  • Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19(5):1205–1223

    Article  Google Scholar 

  • Ralph CJ, Geupel GR, Pyle P, Martin TE, DeSante DF (1993) Handbook of field methods for monitoring landbirds. USDA Forest Service/UNL Faculty Publications, Berkley, CA

    Google Scholar 

  • Ratter J, Ribeiro J, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80(3):223–230

    Article  Google Scholar 

  • Ruiz-Guerra B, Renton K, Dirzo R (2012) Consequences of fragmentation of tropical moist forest for birds and their role in predation of herbivorous insects. Biotropica 44(2):228–236

    Article  Google Scholar 

  • Scheffé H (1959) The analysis of variance. Wiley, New York

    Google Scholar 

  • Seaman BS, Schulze CH (2010) The importance of gallery forests in the tropical lowlands of Costa Rica for understory forest birds. Biol Conserv 143(2):391–398

    Article  Google Scholar 

  • Şekercioḡlu ÇH, Ehrlich PR et al (2002) Disappearance of insectivorous birds from tropical forest fragments. Proc Natl Acad Sci USA 99(1):263–267

    Article  PubMed Central  PubMed  Google Scholar 

  • Sigel BJ, Sherry TW, Young BE (2006) Avian community response to lowland tropical rainforest isolation: 40 years of change at La Selva Biological Station, Costa Rica. Conserv Biol 20(1):111–121

    Article  PubMed  Google Scholar 

  • Sodhi NS, Posa MRC, Lee TM, Warkentin IG (2008) Perspectives in ornithology: effects of disturbance or loss of tropical rainforest on birds. Auk 125(3):511–519

    Article  Google Scholar 

  • Stevens WD (2001) Flora de Nicaragua, introducción, gimnospermas y angiospermas (Acanthaceae—Euphorbiaceae), vol 85., Mongr Syst Bot Missouri Botanical Garden, St. Louis, MO

    Google Scholar 

  • Stiles FG, Skutch AF, Gardner D (1989) A guide to the birds of Costa Rica. Christopher Helm, London

    Google Scholar 

  • Stouffer P, Bierregaard R (1995) Use of Amazonian forest fragments by understory insectivorous birds. Ecology 76(8):2429–2445

    Article  Google Scholar 

  • Tubelis DP, Tomás WM (1999) Distribution of birds in a naturally patchy forest environment in the Pantanal wetland, Brazil. Ararajuba 7(2):81–89

    Google Scholar 

  • Van Bael SA, Bichier P, Ochoa I, Greenberg R (2007) Bird diversity in cacao farms and forest fragments of western Panama. Biodivers Conserv 16(8):2245–2256

    Article  Google Scholar 

  • Vaughan C, Ramírez O, Herrera G, Guries R (2007) Spatial ecology and conservation of two sloth species in a cacao landscape in Limón, Costa Rica. Biodivers Conserv 16(8):2293–2310

    Article  Google Scholar 

  • Wilson EO (1988) The current state of biological diversity. Biodiversity 521(1):3–18

    Google Scholar 

  • Wiescher PT, Pearce-Duvet JMC, Feener DH (2012) Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169(4):1063–1074

Download references

Acknowledgments

We are grateful for help from Geovanny Herrera in the field; without him this project would not have been possible. We also thank Michael McCoy, Chris Vaughan, and Otto Monge for their invaluable advising and Hugo Hemerlink for allowing research on his property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Skye M. Greenler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Greenler, S., Ebersole, J. Bird communities in tropical agroforestry ecosystems: an underappreciated conservation resource. Agroforest Syst 89, 691–704 (2015). https://doi.org/10.1007/s10457-015-9805-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-015-9805-y

Keywords

Navigation