Skip to main content

Advertisement

Log in

The effects of grazing management in montado fragmentation and heterogeneity

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The Portuguese silvo-pastoral system montado is broadly classified as a High Nature Value (HNV) system since it corresponds to farmland hosting high biodiversity levels, and such biodiversity depends on specific land use practices. However, in recent decades a decline both in the total montado area and in the tree cover density within the montado has been observed, driven mainly by management changes. This decline may result in biodiversity loss. Grazing is a central aspect determining the long-term sustainability of the montado system and it has implications also on the montado structural diversity, particularly on connectivity and heterogeneity, which is crucial for the maintenance of montado HNV. The aim of this paper is to demonstrate how variations in montado structural diversity are correlated with grazing management and its implications on the value of the system for conservation. The empirical data derives from a case study composed of 41 montado farms in two municipalities of the Alentejo region. Data on grazing management, biophysical and spatial factors were collected and several metrics were calculated to assess montado fragmentation and heterogeneity. A multivariate analysis was performed using generalized additive models. Results show that different grazing patterns, depending on stocking density and grazing animal type, are correlated with variations in montado fragmentation and heterogeneity. Particularly, cattle’s grazing is shown to have adverse effects on the montado fragmentation, while sheep grazing is shown to have stronger impacts on the heterogeneity within the montado patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acácio V, Holmgren M (2014) Pathways for resilience in Mediterranean cork oak land use systems. Ann For Sci 71:5–13. doi:10.1007/s13595-012-0197-0

    Article  Google Scholar 

  • Acácio V, Holmgren M, Jansen PA, Schrotter O (2007) Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 10:1220–1230. doi:10.1007/s10021-007-9089-9

    Article  Google Scholar 

  • Adams SN (1975) Sheep and cattle grazing in forests: a review. J Appl Ecol 12:143–152. doi:10.2307/2401724

    Article  Google Scholar 

  • Almeida M, Guerra C, Pinto-Correia T (2013) Unfolding relations between land cover and farm management: high nature value assessment in complex silvo-pastoral systems. Geogr Tidsskr J Geogr 113:1–12. doi:10.1080/00167223.2013.848611

    Article  Google Scholar 

  • Andersen E, Baldock D, Bennett H, Beaufoy G, Bignal E, Brouwer F, Elbersen B, Eiden G, Godeschalk F, Jones G, McCracken D, Nieuwenhuizen W, van Eupen M, Hennekens S, Zervas G (2003) Developing a high nature value farming area indicator. Report for the European Environment Agency, Copenhagen

    Google Scholar 

  • Beaufoy G, Baldock D, Dark J (1994) The nature of farming: low intensity farming systems in nine European countries. Institute for European Environmental Policy, London

    Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. doi:10.1016/S0169-5347(03)00011-9

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci B 24(1):43–69. doi:10.1080/02626667909491834

    Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Buckland ST, Burnham KP, Augustin NH (1997) Model selection: an integral part of inference. Biometrics 53:603–618. doi:10.2307/2533961

    Article  Google Scholar 

  • Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286. doi:10.1890/100084

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference—a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • CEEM (1996) A região de Évora numa perspectiva de ecologia da paisagem. Universidade de Évora, Evora

  • Cooper T, Arblaster K, Baldock D, Farmer M, Beaufoy G, Jones G, Poux X, McCracken D, Bignal E, Elbersen B, Wascher D, Angelstam P, Roberge J-M, Pointereau P, Seffer J, Galvanek D (2007) Study on HNV indicators for evaluation. Institute for European Environmental Policy, London

    Google Scholar 

  • Costa A, Madeira M, Lima Santos J, Oliveira  (2011) Change and dynamics in Mediterranean evergreen oak woodlands landscapes of Southwestern Iberian Peninsula. Landsc Urban Plan 102:164–176. doi:10.1016/j.landurbplan.2011.04.002

    Article  Google Scholar 

  • Costa A, Madeira M, Lima Santos J, Plieninger T, Seixas J (2014) Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia: identifying key spatial indicators. J Environ Manage 133:18–26. doi:10.1016/j.jenvman.2013.11.026

    Article  PubMed  Google Scholar 

  • de Clercq EM, Vandemoortele F, De Wulf RR (2006) A method for the selection of relevant pattern indices for monitoring of spatial forest cover pattern at a regional scale. Int J Appl Earth Obs Geoinf 8:113–125. doi:10.1016/j.jag.2005.07.002

    Article  Google Scholar 

  • Dubin RA (1992) Spatial autocorrelation and neighborhood quality. Reg Sci Urban Econ 22:433–452. doi:10.1016/0166-0462(92)90038-3

    Article  Google Scholar 

  • Dufour-Dror J-M (2007) Influence of cattle grazing on the density of oak seedlings and saplings in a Tabor oak forest in Israel. Acta Oecol 31:223–228. doi:10.1016/j.actao.2006.11.003

    Article  Google Scholar 

  • ESRI (2011) ArcGIS Desktop: Release 10. ESRI, Redlands

    Google Scholar 

  • Evans IS (1972) General geomorphometry, derivatives of altitude, and descriptive statistics. In: Chorley RJ (ed) Spatial analysis in geomorphology. Harper and Row, New York, pp 17–90

    Google Scholar 

  • Evans JS, Oakleaf J, Cushman SA, Theobald D (2013) Geomorphometry and Gradient Metrics Toolbox: a toolbox for surface gradient modeling. http://evansmurphy.wix.com/evansspatial. Accessed 15 Dec 2013

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112. doi:10.1111/j.1461-0248.2010.01559.x

    Article  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280. doi:10.1111/j.1466-8238.2006.00287.x

    Article  Google Scholar 

  • Fortuny X, Carcaillet C, Chauchard S (2014) Land use legacies and site variables control the understorey plant communities in Mediterranean broadleaved forests. Agric Ecosyst Environ 189:53–59. doi:10.1016/j.agee.2014.03.012

    Article  Google Scholar 

  • Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil–landscape modelling and spatial prediction of soil attributes. Int J Geogr Inf Syst 9:421–432. doi:10.1080/02693799508902047

    Article  Google Scholar 

  • Godinho S, Guiomar N, Machado R, Santos P, Sá-Sousa P, Fernandes JP, Neves N, Pinto-Correia T (2014) Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agrofor Syst. doi:10.1007/s10457-014-9757-7

  • Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138. doi:10.1890/03-5084

    Article  Google Scholar 

  • Grant SA, Torvell L, Smith HK, Suckling DE, Forbes TDA, Hodgson J (1987) Comparative studies of diet selection by sheep and cattle: blanket bog and heather moor. J Ecol 75:947–960. doi:10.2307/2260163

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Guisan A, Weiss SB, Weiss AD (1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecol 143:107–122. doi:10.1023/A:1009841519580

    Article  Google Scholar 

  • Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Modell 157:89–100. doi:10.1016/S0304-3800(02)00204-1

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Horn BKP (1981) Hill shading and the reflectance map. Proc IEEE 69:14–47. doi:10.1109/PROC.1981.11918

    Article  Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. doi:10.1093/biomet/76.2.297

    Article  Google Scholar 

  • INMG (1991) O clima de Portugal. Normais climatológicas da região de Alentejo e Algarve correspondentes a 1951–1980. Fascículo XLIX, Vol. 4, 4ª região, Instituto Nacional de Meteorologia e Geofísica, Lisboa

  • Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol 15:115–130. doi:10.1023/A:1008129329289

    Article  Google Scholar 

  • Jenness JS (2004) Calculating landscape surface area from digital elevation models. Wildl Soc Bull 32:829–839

    Article  Google Scholar 

  • Jenness JS (2011) DEM Surface Tools: an ArcGIS extension for analyzing raster elevation datasets. http://www.jennessent.com/arcgis/surface_area.htm. Accessed 10 Feb 2013

  • Jenness JS, Brost B, Beier P (2013) Land facet corridor designer. Extension for ArcGIS. http://www.jennessent.com/arcgis/land_facets.htm. Accessed 5 Dec 2013

  • Keenleyside C, Tucker G, McConville A (2010) Farmland abandonment in the EU: an assessment of trends and prospects. Institute for European Environmental Policy, London

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 76:1659–1673. doi:10.2307/1939924

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606. doi:10.1111/j.1654-1103.2002.tb02087.x

    Article  Google Scholar 

  • McKell CM (1989) Shrub palatability. In: McKell CM (ed) The biology and utilization of shrubs. Academic Press, San Diego, pp 267–282

    Google Scholar 

  • Mitasova H, Hofierka J, Zlocha M, Iverson LR (1996) Modelling topographic potential for erosion and deposition using GIS. Int J Geogr Inf Syst 10:629–641. doi:10.1080/02693799608902101

    Article  Google Scholar 

  • Monteiro-Henriques T (2010) Landscape and phytosociology of the Paiva River’s hydrographical basin. PhD dissertation, Instituto Superior de Agronomia, Universidade Técnica de Lisboa

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452. doi:10.2136/sssaj1993.03615995005700020026x

    Article  Google Scholar 

  • Moreira AC, Martins JMS (2005) Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. For Pathol 35:145–162. doi:10.1111/j.1439-0329.2005.00397.x

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Vining GG, Robinson TJ (2010) Generalized linear models with applications in engineering and the sciences, 2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  • Papachristou TG, Platis PD (2011) The impact of cattle and goats grazing on vegetation in oak stands of varying coppicing age. Acta Oecol 37:16–22. doi:10.1016/j.actao.2010.11.001

    Article  Google Scholar 

  • Paracchini ML, Terres JM, Petersen JE, Hoogeveen Y (2007) High nature value farmland and traditional agricultural landscapes: open opportunities in the development of rural areas. In: Pedroli B, van Doorn A, de Blust G, Paracchini ML, Wascher D, Bunce F (eds) Europe’s living landscapes. Essays on exploring our identity in the countryside. Landscape Europe/KNNV Publishers, Zeist, pp 21–34

    Google Scholar 

  • Pereira P, Fonseca M (2003) Nature vs. nurture: the making of the montado ecosystem. Conserv Ecol 7(3):7

    Google Scholar 

  • Pereira P, Godinho C, Gomes M, Rabaça J (2014) The importance of the surroundings: are bird communities of riparian galleries influenced by agroforestry matrices in SW Iberian Peninsula? Ann For Sci 71:33–41. doi:10.1007/s13595-012-0228-x

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Pérez-Devesa M, Cortina J, Vilagrosa A, Vallejo R (2008) Shrubland management to promote Quercus suber L. establishment. For Ecol Manage 255:374–382. doi:10.1016/j.foreco.2007.09.074

    Article  Google Scholar 

  • Pike R, Wilson SE (1971) Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geol Soc Am Bull 82:1079–1084

    Article  Google Scholar 

  • Pinto-Correia T, Breman B (2009) New roles for farming in a differentiated countryside: the Portuguese example. Reg Environ Change 9:143–152. doi:10.1007/s10113-008-0062-8

    Article  Google Scholar 

  • Pinto-Correia T, Godinho S (2013) Changing agriculture-changing landscapes: what is going on in the high valued montado. In: Ortiz-Miranda D, Moragues-Faus A, Arnalte-Alegre E (eds) Agriculture in Mediterranean Europe: between old and new paradigms. Research in rural sociology and development, vol 19. Emerald Group Publishing Limited, Bingley, pp 75–90. doi: 10.1108/S1057-1922(2013)0000019006

  • Pinto-Correia T, Mascarenhas J (1999) Contribution to the extensification/intensification debate: new trends in the Portuguese montado. Landsc Urban Plan 46:125–131. doi:10.1016/S0169-2046(99)00036-5

    Article  Google Scholar 

  • Pinto-Correia T, Barroso F, Surová D, Menezes H (2011a) The fuzziness of Montado landscapes: progress in assessing user preferences through photo-based surveys. Agrofor Syst 82:209–224. doi:10.1007/s10457-010-9347-2

    Article  Google Scholar 

  • Pinto-Correia T, Ribeiro N, Sá-Sousa P (2011b) Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor Syst 82:99–104. doi:10.1007/s10457-011-9388-1

    Article  Google Scholar 

  • Pinto-Correia T, Menezes H, Barroso LF (2014) The landscape as an asset in Southern European fragile agricultural systems: contrasts and contradictions in land managers attitudes and practices. Landsc Res 39(2):205–217. doi:10.1080/01426397.2013.790948

    Article  Google Scholar 

  • Plieninger T (2006) Habitat loss, fragmentation, and alteration—quantifying the impact of land-use changes on a Spanish dehesa landscape by use of aerial photography and GIS. Landsc Ecol 21:91–105. doi:10.1007/s10980-005-8294-1

    Article  Google Scholar 

  • Plieninger T (2007) Compatibility of livestock grazing with stand regeneration in Mediterranean holm oak parklands. J Nat Conserv 15:1–9. doi:10.1016/j.jnc.2005.09.002

    Article  Google Scholar 

  • Plieninger T, Bieling C (2013) Resilience-based perspectives to guiding high-nature-value farmland. Ecol Soc 18(4):20. doi:10.5751/ES-05877-180420

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing, v. 3.0.1. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 3 July 2013

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5:23–27

    Google Scholar 

  • Roberts DW, Cooper SV (1989) Concepts and techniques of vegetation mapping. In: Ferguson D, Morgan P, Johnson FD (eds) Land classification based on vegetation: applications for resource management. USDA Forest Service GTR INT-257, Ogden, pp 90–96

  • Rook AJ, Dumont B, Isselstein J, Osoro K, WallisDeVries MF, Parente G, Mills J (2004) Matching type of livestock to desired biodiversity outcomes in pastures—a review. Biol Conserv 119:137–150. doi:10.1016/j.biocon.2003.11.010

    Article  Google Scholar 

  • Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. J Wildl Manage 71:1419–1426. doi:10.2193/2005-723

    Article  Google Scholar 

  • Schmidt F, Persson A (2003) Comparison of DEM data capture and topographic wetness indices. Precis Agric. doi:10.1023/A:1024509322709

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Illinois

    Google Scholar 

  • Stage AR (1976) An expression of the effects of aspect, slope, and habitat type on tree growth. For Sci 22:457–460

    Google Scholar 

  • Tabachnick BG, Fidell LS (2007) Using multivariate statistics. Pearson Education, New York

    Google Scholar 

  • Teixido AL, Quintanilla LG, Carreño F, Gutiérrez D (2010) Impacts of changes in land use and fragmentation patterns on Atlantic coastal forests in northern Spain. J Environ Manage 91:879–886. doi:10.1016/j.jenvman.2009.11.004

    Article  PubMed  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Vallejo V, Aronson J, Pausas J, Pereira JS, Fontaine C (2009) The way forward. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, pp 235–245

    Google Scholar 

  • van Doorn A, Pinto-Correia T (2007) Differences in land cover interpretation in landscapes rich in cover gradients: reflections based on the montado of South Portugal. Agrofor Syst 70:169–183. doi:10.1007/s10457-007-9055-8

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. CRC Press/Chapman and Hall, Boca Raton

    Google Scholar 

  • Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Modell 157:157–177. doi:10.1016/S0304-3800(02)00193-X

    Article  Google Scholar 

  • Wu J, Jelinski DE, Luck M, Tueller PT (2000) Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Annals of GIS 6(1):6–19. doi:10.1080/10824000009480529

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by FEDER Funds through the Operational Programme for Competitiveness Factors - COMPETE and National Funds through FCT - Foundation for Science and Technology under the Strategic Projects PEst-C/AGR/UI0115/2011 and PEst-OE/AGR/UI0115/2014. Research associated with this paper was also funded by the FCT as part of Project PTDC/CS-GEO/110944/2009 and by FEDER as part of the INALENTEJO (Project ALENT-07-0224-FEDER-001744). The authors are thankful to the two anonymous reviewers for the constructive comments on the earlier version of this manuscript and to Jorge Capelo for the clarifications provided on species nomenclature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M., Azeda, C., Guiomar, N. et al. The effects of grazing management in montado fragmentation and heterogeneity. Agroforest Syst 90, 69–85 (2016). https://doi.org/10.1007/s10457-014-9778-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-014-9778-2

Keywords

Navigation