Skip to main content

Advertisement

Log in

Bioenergy provision by an alley cropping system of grassland and shrub willow hybrids: biomass, fuel characteristics and net energy yields

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

In the temperate zone, alley cropping is promoted as a climate change-resilient agroforestry practice for the provision of biogenic energy carriers. However, little information is available on the potential of such cropping systems as feedstock for biofuel production. In a field trial in Central Europe, the triennial performance of alley cropping systems was assessed. The systems consisted of clover-grass, a native diversity-oriented grassland mixture and multi-rows of willows. They were compared to a willow and grassland control adjacent to the trial area. Three different conversion technologies were applied to grassland feedstock and analyzed for relevant quality parameters. Net energy balances were calculated to determine the potential of the cropping systems and the associated controls as providers of biogenic energy carriers. The grassland control had the highest triennial yield (18 t DM ha−1), whereas pure willow stands were less productive with 7 t DM ha−1. Alley cropping was intermediate with 12 t DM ha−1 on average. Net energy yield of the clover-grass based systems was highest in the grassland control for all conversion technologies, whereas values of the diversity-based systems in the control and the alley cropping system achieved similar values. This study only investigated the first 3 years after establishment, when growth rates of shrub willows were still low. Thus, more research is needed to evaluate the long-term performance of agroforestry systems with shrub willows and herbaceous crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albaugh JM, Albaugh TJ, Heiderman RR, Leggett Z, Stape JL, King K, O’Neill KP, King JS (2014) Evaluating changes in switchgrass physiology, biomass, and light-use efficiency under artificial shade to estimate yields if intercropped with Pinus taeda L. Agrofor Syst 88:489–503. doi:10.1007/s10457-014-9708-3

    Article  Google Scholar 

  • Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G(2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178:358–370

  • Barbieri C, Valdivia C (2010) Recreation and agroforestry: examining new dimensions of multifunctionality in family farms. J Rural Stud 26:465–473. doi:10.1016/j.jrurstud.2010.07.001

    Article  Google Scholar 

  • Benjamin TJ, Hoover WL, Seifert JR, Gillespie AR (2000) Defining competition vectors in a temperate alleycropping system in the midwestern USA—4. The economic return of ecological knowledge. Agrofor Syst 48:79–93. doi:10.1023/A:1006367303800

    Article  Google Scholar 

  • Börjesson P, Tufvesson LM (2011) Agricultural crop-based biofuels— resource efficiency and environmental performance including direct land use changes. J Clean Prod 19:108–120. doi:10.1016/j.jclepro.2010.01.001

    Article  Google Scholar 

  • Bühle L, Reulein J, Stülpnagel R, Zerr W, Wachendorf M (2012a) Methane yields and digestion dynamics of press fluids from mechanically dehydrated maize silages using different types of digesters. Bioenergy Res 5:294–305. doi:10.1007/s12155-011-9127-5

    Article  Google Scholar 

  • Bühle L, Hensgen F, Donnison I, Heinsoo K, Wachendorf M (2012b) Life cycle assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems. Bioresour Technol 111:230–239. doi:10.1016/j.biortech.2012.02.072

    Article  PubMed  Google Scholar 

  • Bühle L, Duerl G, Hensgen F, Urban A, Wachendorf M (2014) Effects of hydrothermal conditioning and mechanical dewatering on ash melting behaviour of solid fuel produced from European semi-natural grasslands. Fuel 118:123–129. doi:10.1016/j.fuel.2013.10.063

    Article  Google Scholar 

  • Bullard MJ, Mustill SJ, McMillan SD, Nixon PMI, Carver P, Britt CP (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp. —1. Yield response in two morphologically diverse varieties. Biomass Bioenergy 22:15–25. doi:10.1016/S0961-9534(01)00054-X

    Article  Google Scholar 

  • Coll L, Messier C, Delagrange S, Berninger F (2007) Growth, allocation and leaf gas exchanges of hybrid poplar plants in their establishment phase on previously forested sites: effect of different vegetation management techniques. Ann For Sci 64:275–285. doi:10.1051/forest:2007005

    Article  Google Scholar 

  • Costanzo A, Barberi P (2014) Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review. Agron Sustain Dev 34:327–348. doi:10.1007/s13593-013-0178-1

    Article  Google Scholar 

  • DeHaan LR, Weisberg S, Tilman D, Fornara D (2010) Agricultural and biofuel implications of a species diversity experiment with native perennial grassland plants. Agric Ecosyst Environ 137:33–38. doi:10.1016/j.agee.2009.10.017

    Article  Google Scholar 

  • Dimitriou I, Mola-Yudego B, Aronsson P (2012) Impact of willow short rotation coppice on water quality. Bioenergy Res 5:537–545. doi:10.1007/s12155-012-9211-5

    Article  CAS  Google Scholar 

  • Fiala M, Bacenetti J (2012) Economic, energetic and environmental impact in short rotation coppice harvesting operations. Biomass Bioenergy 42:107–113. doi:10.1016/j.biombioe.2011.07.004

    Article  CAS  Google Scholar 

  • FNR (2005) Ergebnisse des Biogasmessprogramms (Results of the biogas monitoring program). Fachagentur Nachwachsende Rohstoffe e.V, Gülzow

    Google Scholar 

  • Frame J (1990) Herbage productivity of a range of grass species in association with white clover. Grass Forage Sci 45:57–64. doi:10.1111/j.1365-2494.1990.tb02182.x

    Article  Google Scholar 

  • Frame J, Newbould P (1984) Herbage production from grass/white clover swards. In: Thomson DJ (ed) Forage legumes. Occassional symposium of the British Grassland Society 16:15–35

  • Friedl AP, Adouvas ER, Otter H, Armuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544:191–198. doi:10.1016/j.aca.2005.01.041

    Article  CAS  Google Scholar 

  • Gamble JD, Johnson G, Sheaffer CC, Current DA, Wyse DL (2014) Establishment and early productivity of perennial biomass alley cropping systems in Minnesota, USA. Agrofor Syst 88:75–85. doi:10.1007/s10457-013-9657-2

    Article  Google Scholar 

  • Gissén C, Prade T, Kreuger E, Nges IA, Rosenqvist H, Svensson S-E, Lantz M, Mattsson JE, Börjesson P, Björnsson L (2014) Comparing energy crops for biogas production—yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 64:199–210. doi:10.1016/j.biombioe.2014.03.061

    Article  Google Scholar 

  • Gruenewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Huettl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328. doi:10.1016/j.ecoleng.2006.09.012

    Article  Google Scholar 

  • Hartmann L, Richter F, Busch, Ehret M, Jansen M, Lamersdorf N (2014) Establishment of short rotation coppices in the South of Lower Saxony and in Central Thuringia in the context of the BEST-research framework—site characteristics and initial biomass production (in German only). Forstarchiv 85:134–150. doi:10.4432/0300-4112-85-134

    Google Scholar 

  • Hensgen F, Bühle L, Donnison I, Fraser M, Vale J, Corton J, Heinsoo K, Melts I, Wachendorf M (2012) Mineral concentrations in solid fuels from European semi-natural grasslands after hydrothermal conditioning and subsequent mechanical dehydration. Bioresour Technol 118:332–342. doi:10.1016/j.biortech.2012.05.035

    Article  CAS  PubMed  Google Scholar 

  • Herrmann C, Prochnow A, Heiermann M, Idler C (2013) Biomass from landscape management of grassland used for biogas production: effects of harvest date and silage additives on feedstock quality and methane yield. Grass Forage Sci 69:549–566. doi:10.1111/gfs.120860

    Article  Google Scholar 

  • Holzmueller EJ, Jose S (2012) Biomass production for biofuels using agroforestry: potential for the North Central Region of the United States. Agrofor Syst 85:305–314. doi:10.1007/s10457-012-9502-z

    Article  Google Scholar 

  • Høgh-Jensen H, Loges R, Jørgensen FV, Vinther FP, Jensen ES (2004) An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Agric Syst 82:181–194

  • IEA (2013) World energy outlook 2013. IEA. doi:10.1787/weo-2013-en

    Google Scholar 

  • IUSS Working Group WRB. 2006. World reference base for soil resources (2006) A framework for international classification, correlation and communication. World Soil Resources Reports No. 103. International Union of Soil Sciences (IUSS) and Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. ftp://ftp.fao.org/agl/agll/docs/wsrr103e.pdf. Accessed 17 Dec 2014

  • Jenkins BM, Baxter LL, Miles TR, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. doi:10.1016/S0378-3820(97)00059-3

    Article  CAS  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. doi:10.1007/s10457-009-9229-7

    Article  Google Scholar 

  • Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren. (energy from biomass: basic principles, conversion technologies, and procedures). Springer, Dordrecht. doi:10.1007/978-3-540-85095-3

    Google Scholar 

  • Karp A, Richter GM (2011) Meeting the challenge of food and energy security. J Exp Bot 62:3263–3271. doi:10.1093/jxb/err099

    Article  CAS  PubMed  Google Scholar 

  • Khalsa J, Fricke T, Weigelt A, Wachendorf M (2014) Effects of species richness and functional groups on chemical constituents relevant for methane yields from anaerobic digestion: results from a grassland diversity experiment. Grass Forage Sci 69:49–63. doi:10.1111/gfs.12028

    Article  CAS  Google Scholar 

  • King C, McEniry J, O’Kiely P, Richardson M (2012) The effects of hydrothermal conditioning, detergent and mechanical pressing on the isolation of the fibre-rich press-cake fraction from a range of grass silages. Biomass Bioenergy 42:179–188. doi:10.1016/j.biombioe.2012.03.009

    Article  CAS  Google Scholar 

  • KTBL (2014) Fuel consumption calculator. Association for technology and structures in agriculture e.V. (KTBL).http://daten.ktbl.de/dieselconsumption/main.html;jsessionid=9DB1E36777A44D264812EE9121035226 Accessed 27 Aug 2014

  • Long AJ, Nair PKR (1999) Trees outside forests: agro-, community, and urban forestry. New For 17:145–174. doi:10.1023/A:1006523425548

    Article  Google Scholar 

  • Mbow C, Smith P, Skole D et al (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14. doi:10.1016/j.cosust.2013.09.002

    Article  Google Scholar 

  • McEniry J, Finnan J, King C, O’Kiely P (2012) The effect of ensiling and fractionation on the suitability for combustion of three common grassland species at sequential harvest dates. Grass Forage Sci 67:559–568. doi:10.1111/j.1365-2494.2012.00902.x

    Article  CAS  Google Scholar 

  • Melts I, Normak A, Nurk L, Heinsoo K (2014) Chemical characteristics of biomass from nature conservation management for methane production. Bioresour Technol 167:226–231. doi:10.1016/j.biortech.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry—operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121:123–136. doi:10.1016/S0378-1127(98)00561-1

    Article  Google Scholar 

  • Morhart C, Sheppard J, Seidl F, Spiecker H (2013) Influence of different tillage systems and weed treatments in the establishment year on the final biomass production of short rotation coppice poplar. Forests 4:849–867. doi:10.3390/f4040849

    Article  Google Scholar 

  • Morhart CD, Douglas GC, Dupraz C et al (2014) Alley coppice-a new system with ancient roots. Agrofor Syst 71:527–542. doi:10.1007/s13595-014-0373-5

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Nguyen Q, Hoang MH, Oborn I, van Noordwijk M (2013) Multipurpose agroforestry as a climate change resiliency option for farmers: an example of local adaptation in Vietnam. Clim Chang 117:241–257. doi:10.1007/s10584-012-0550-1

    Article  Google Scholar 

  • Obernberger I, Brunner T, Bärnthaler G (2006) Chemical properties of solid biofuels—significance and impact. Biomass Bioenergy 30:973–982. doi:10.1016/j.biombioe.2006.06.011

    Article  CAS  Google Scholar 

  • Peyraud JL, Le Gall A, Luescher A (2009) Potential food production from forage legume-based-systems in Europe: an overview. Ir J Agric Food Res 48:115–135

    Google Scholar 

  • Prochnow A, Heiermann, M, Drenckhan A, Schelle H (2006) Biomethanisation of grass from landscape management—seasonal patterns of biogas and methane yields. NAROSSA 2006, 12th international conference for renewable resources and plant biotechnology, 12–13 June, Magdeburg, Germany, p 1 14. (CD-Version)

  • Quinkenstein A, Wollecke J, Boehm C, Gruenewald H et al (2009) Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ Sci Policy 12:1112–1121. doi:10.1016/j.envsci.2009.08.008

    Article  Google Scholar 

  • Reynolds PE, Simpson JA, Thevathasan NV, Gordon AM (2007) Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol Eng 29:362–371. doi:10.1016/j.ecoleng.2006.09.024

    Article  Google Scholar 

  • Richter F, Graß R, Fricke T, Zerr W, Wachendorf M (2009) Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. II. Effects of hydrothermal conditioning and mechanical dehydration on anaerobic digestion of press fluids. Grass Forage Sci 64:354–363. doi:10.1111/j.1365-2494.2009.00700.x

    Article  Google Scholar 

  • Richter F, Fricke T, Wachendorf M (2010) Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. III. Effects of hydrothermal conditioning and mechanical dehydration on solid fuel properties and on energy and greenhouse gas balances. Grass Forage Sci 65:185–199. doi:10.1111/j.1365-2494.2010.00737.x

    Article  Google Scholar 

  • Righelato R, Spracklen DV (2007) Carbon mitigation by biofuels or by saving and restoring forests. Science 317:902. doi:10.1126/science.1141361

    Article  CAS  PubMed  Google Scholar 

  • Rowe RL, Hanley ME, Goulson D, Clarke DJ, Doncaster CP, Taylor G (2011) Potential benefits of commercial willow short rotation coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 35:325–336. doi:10.1016/j.biombioe.2010.08.046

    Article  Google Scholar 

  • Schulze ED, Koerner C (2012) Net primary production and bioenergy. In: Leopoldina bioenergy—chances and limits. German National Academy of Science Leopoldina. Halle (Saale), pp 90–102

  • Stork M, Schulte A, Murach D (2014) Large-scale fuelwood production on agricultural fields in mesoscale river catchments—GIS-based determination of potentials in the Dahme river catchment (Brandenburg, NE Germany). Biomass Bioenergy 64:42–49. doi:10.1016/j.biombioe.2014.03.029

    Article  Google Scholar 

  • Thomsen MH, Haugaard-Nielsen (2008) Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass. J Ind Microbiol Biotechnol 35:303–311. doi:10.1007/s10295-008-0334-9

    Article  CAS  PubMed  Google Scholar 

  • Verwijst T, Telenius B (1999) Biomass estimation procedures in short rotation forestry. For Ecol Manag 121:137–146. doi:10.1016/S0378-1127(98)00562-3

    Article  Google Scholar 

  • Wachendorf M, Richter F, Fricke T, Graß R, Neff R (2009) Utilisation of semi-natural grassland through an integrated generation of solid fuel and biogas from biomass I: effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci 64:132–143. doi:10.1111/j.1365-2494.2009.00677.x

    Article  CAS  Google Scholar 

  • West P (2009) Tree and forest measurement. Springer, Berlin

    Book  Google Scholar 

  • Wilkinson JM, Evans EJ, Bilsborrow PE, Wright C, Hewison WO, Pilbeam DJ (2007) Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenerg 31:469–474

  • Workman SW, Bannister ME, Nair PKR (2003) Agroforestry potential in the southeastern United States: perceptions of landowners and extension professionals. Agrofor Syst 59:73–83. doi:10.1023/A:1026193204801

    Article  Google Scholar 

  • World Agroforestry Center (2014) Programme for the development of alternative biofuel crops. http://worldagroforestry.org/research/alternative-biofuel-crops. Accessed 17 Dec 2014

Download references

Acknowledgments

This work was funded by the German Ministry of Education and Research (BMBF) within the Framework Program Research for Sustainable Development (FONA). Rachel Smith is gratefully acknowledged for pre-reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ehret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehret, M., Bühle, L., Graß, R. et al. Bioenergy provision by an alley cropping system of grassland and shrub willow hybrids: biomass, fuel characteristics and net energy yields. Agroforest Syst 89, 365–381 (2015). https://doi.org/10.1007/s10457-014-9773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-014-9773-7

Keywords

Navigation