Skip to main content

Advertisement

Log in

Fertilizer type and species composition affect leachate nutrient concentrations in coffee agroecosystems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Intensification of coffee (Coffea arabica) production is associated with increases in inorganic fertilizer application and decreases in species diversity. Both the use of organic fertilizers and the incorporation of trees on farms can, in theory, reduce nutrient loss in comparison with intensified practices. To test this, we measured nutrient concentrations in leachate at 15 and 100 cm depths on working farms. We examined (1) organically managed coffee agroforests (38 kg N ha−1 year−1; n = 4), (2) conventionally managed coffee agroforests (96 kg N ha−1 year−1; n = 4), and (3) one conventionally managed monoculture coffee farm in Costa Rica (300 kg N ha−1 year−1). Concentrations of nitrate (NO3 -N) and phosphate (PO4 3−-P) were higher in the monoculture compared to agroforests at both depths. Nitrate concentrations were higher in conventional than organic agroforests at 15 cm only. Soil solutions collected under nitrogen (N)-fixing Erythrina poeppigiana had elevated NO3 -N concentrations at 15 cm compared to Musa acuminata (banana) or Coffea. Total soil N and carbon (C) were also higher under Erythrina. This research shows that both fertilizer type and species affect concentrations of N and P in leachate in coffee agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertin A, Nair PKR (2004) Farmers’ perspectives on the role of shade trees in coffee production systems: an assessment from the Nicoya peninsula, Costa Rica. Hum Ecol 32:443–463. doi:10.1023/B:HUEC.0000043515.84334.76

    Article  Google Scholar 

  • Araya M (2005) Stratification and spatial distribution of the banana (Musa AAA, Cavendish subgroup, cvs’ Valery’and Grande naine’) root system. In: Turner DW, Rosales FE (eds) Banana root system: towards a better understanding for its productive management. Proceedings of an International Symposium, San José, Costa Rica, 3–5 November 2003, pp 83–103

  • Aronsson H, Torstensson G, Bergström L (2007) Leaching and crop uptake of N, P and K from organic and conventional cropping systems on a clay soil. Soil Use Manag 23:71–81. doi:10.1111/j.1475-2743.2006.00067

    Article  Google Scholar 

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412. doi:10.1016/j.jml.2007.12.005

    Article  Google Scholar 

  • Babbar LI, Zak DR (1995) Nitrogen loss from coffee agroecosystem in Costa Rica: leaching and denitrification in the presence and absence of shade trees. J Environ Qual 24:227–233

    Article  CAS  Google Scholar 

  • Berendse F (1979) Competition between plant populations with different rooting depths I. Theoretical considerations. Oecologia 43:19–26. doi:10.1007/BF00346669

    Article  Google Scholar 

  • Birch HF (1964) Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant Soil 20:43–49

    Article  Google Scholar 

  • Bradford MA, Wood SA, Maestre FT, Reynolds JF, Warren RJ (2012) Contingency in ecosystem but not plant community response to multiple global change factors. New Phytol 196:462–471. doi:10.1111/j.1469-8137.2012.04271.x

    Article  PubMed  Google Scholar 

  • Bray RM, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Bremer C, Braker G, Matthies D, Reuter A, Engels C, Conrad R (2007) Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microb 73:6876–6884

    Article  CAS  Google Scholar 

  • Browne WJ, Draper D (2006) A comparison of Baysian and likelihood-based methods for fitting multilevel models. Bayesian Anal 3:473–514

    Google Scholar 

  • Campo J, Maas M, Jaramillo VJ, Martnez-Yrizar A, Sarukhan J (2001) Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 53:161–179. doi:10.1023/A:1010663516029

    Article  CAS  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104:18123

    Article  PubMed  CAS  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  PubMed  CAS  Google Scholar 

  • Carney KM, Matson PM (2004) Microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems 8:928–940

    Article  Google Scholar 

  • Chesney P (2008) Nitrogen and fine root length dynamics in a tropical agroforestry system with periodically pruned Erythrina poeppigiana. Agrofor Syst 72:149–159. doi:10.1007/s10457-007-9064-7

    Article  Google Scholar 

  • Chikowo R, Mapfumo P, Nyamugafata P, Giller KE (2004) Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe. Agr Ecosyst Environ 102:119–131

    Article  Google Scholar 

  • Clark J (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14. doi:10.1111/j.1461-0248.2004.00702.x

    Article  Google Scholar 

  • Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. J Trop Ecol 14:27–45

    Article  Google Scholar 

  • Clark MS, Horwath WR, Shennan C, Scow KM, Lantni WT, Ferris H (1999) Nitrogen, weeds and water as yield-limiting factors in conventional, low-input, and organic tomato systems. Agr Ecosyst Environ 73:257–270. doi:10.1016/S0167-8809(99)00057-2

    Article  Google Scholar 

  • Danso S, Bowen GD, Sanginga N (1992) Biological nitrogen fixation in trees in agro-ecosystems. Plant Soil 14:177–196. doi:10.1007/BF00011316

    Article  Google Scholar 

  • Draye X (2002) Banana roots: architecture and genetics. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 261–277

  • Drinkwater LE, Letourneau DK, Workneh F, Van Bruggen AHC, Shennan C (1995) Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol Appl 5:1098–1112

    Article  Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting plant effects on ecosystem processes. Annu Rev Ecol Syst 34:455–485. doi:10.1146/annurev.ecolsys.34.011802.132342

    Article  Google Scholar 

  • Ewel JJ, Bigelow SW (2011) Tree species identity and interactions with neighbors determine nutrient leaching in model tropical forests. Oecologia 167:1127–1140

    Article  PubMed  Google Scholar 

  • Fließach A, Mader P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768. doi:10.1016/S0038-0717(99)00197-2

    Article  Google Scholar 

  • Fließach A, Oberholzer H-R, Gunst L, Mader M (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agr Ecosyst Environ 118:273–284. doi:10.1016/j.agee.2006.05.022

    Article  Google Scholar 

  • Goméz-Delgado F, Roupsard O, le Maire G, Taugourdeau S, Pérez A, can Oijen M, Vaast P, Rapidel B, Harmand JM, Voltz M, Bonnefond JM, Imbach JP, Moussa R (2011) Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica. Hydrol Earth Syst Sci 15:369–392

    Article  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Google Scholar 

  • Harmand JM, Avila H, Dambrine E, Skiba U, de Miguel S, Renderos RV, Oliver R, Jimenez F, Beer J (2007) Nitrogen dynamics and soil nitrate retention in a Coffea arabica-Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85:125–139. doi:10.1007/s10533-007-9120-4

    Article  CAS  Google Scholar 

  • Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419

    Article  PubMed  Google Scholar 

  • Hosomi M, Sudo R (1986) Simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulfate digestion. Int J Envion Stud 27:267–275

    Article  CAS  Google Scholar 

  • Hurlbert SH, Lombardi CM (2009) Final Collapse of the Neyman-Pearson Decision Theoretic Framework and Rise of the neoFisherian. Ann Zool Fennici 46:311–349

    Article  Google Scholar 

  • Innes L, Hobbs PJ, Bardgett RD (2004) The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol Fertility Soils 40:7–13

    Article  Google Scholar 

  • Jongmans AG, Van Breemen N, Lundström U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Jordan CF (1982) The nutrient balance of an Amazonian rain-forest. Ecology 63:647–654

    Article  CAS  Google Scholar 

  • Lamb EG, Kennedy N, Siciliano SD (2011) Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 338:483–495

    Article  CAS  Google Scholar 

  • Liebig MA, Doran JW (1999) Impact of organic production practices on soil quality indicators. J Environ Qual 28:1601–1609

    Article  CAS  Google Scholar 

  • Monaghan RM, Paton RJ, Smith LC, Binet C (2000) Nutrient losses in drainage and surface runoff from a cattle-grazed pasture in Southland. Proc N Z Grassland Assoc 62:99–104

    Google Scholar 

  • Monaghan RM, Paton RJ, Drewry JJ (2002) Nitrogen and phosphorus losses in mole and tile drainage from a cattle-grazed pasture in eastern Southland. N Z J Agr Res 45:197–205

    Article  Google Scholar 

  • Payán F, Jones DL, Beer J, Harmand JM (2009) Soil characteristics below Erythrina poeppigiana in organic and conventional Costa Rican coffee plantations. Agrofor Syst 76:81–93. doi:10.1007/s10457-008-9201-y

    Article  Google Scholar 

  • Radulovich R, Sollins S (1991) Nitrogen and phosphorus leaching in zero-tension drainage from a humid tropical soil. Biotropica 23:84–87

    Article  Google Scholar 

  • R Development Core Team (2012) R: A Language and environment for statistical computing. In: R Development Core Team (ed) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Reganold JP, Palmer AS, Lockhart JC, Macgregor AN (1993) Soil quality and financial performance of biodynamic and conventional farms in New Zealand. Science 260:344. doi:10.1126/science.260.5106.344

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589–592

    Article  PubMed  CAS  Google Scholar 

  • Reynolds-Vargas JS, Richter DD (1995) Nitrate in groundwaters of the Central Valley, Costa Rica. Environ Int 21:71–79. doi:10.1016/0160-4120(94)00034-5

    Article  CAS  Google Scholar 

  • Russell AE, Ewel JJ (1985) Leaching from a tropical andept during big storms: a comparison of three methods. Soil Sci 139:181–189

    Article  CAS  Google Scholar 

  • Salas R, Bornemisza E, Zapata F, Chaves V, Rivera A (2002) Absorcion del fertilizante nitrogenado por la planta de café y su influencia sobre la contaminacion de las aguas subterraneas. Manejo Integrado de Aguas Subterraneas. EUNED, San José, Costa Rica, pp 89–104

  • Schroth G, Salazar E, Da Silva JP (2001) Soil nitrogen mineralization under tree crops and a legume cover crop in multi-strata agroforestry in Central Amamzonia: spatial and temporal patterns. Exp Agr 37:253–367. doi:10.1017/S0014479701002058

    Article  CAS  Google Scholar 

  • Selvaradjou SK, Montanarella L, Spaargaren O, Dent D (2005) European Digital Archive of Soil Maps (EuDASM)—Soil Maps of Latin America and Caribbean Islands. Office of the Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Seyfried MS, Rao PSC (1991) Nutrient leaching from two contrasting cropping systems in the humid tropics. Trop Agr 68:9–18

    CAS  Google Scholar 

  • Siles P, Harmand JM, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor Syst 78:269–286

    Article  Google Scholar 

  • Smith T, Shugart HH, Woodward FI (1997) Plant functional types. Cambridge University Press, Cambridge

    Google Scholar 

  • Sommer K (1978) Use of radioisotopes in agriculture. Report to the Government of Costa Rica Internal Atomic Energy Agency, Vienna

    Google Scholar 

  • Stopes C, Lord EI, Phillips L, Woodward L (2002) Nitrate leaching from organic farms and conventional farms following best practice. Soil Use Manag 18:256–263. doi:10.1111/j.1475-2743.2002.tb00267.x

    Article  Google Scholar 

  • Torstensson G, Aronsson H, Bergstrom L (2006) Nutrient use efficiencies and leaching of organic and conventional cropping systems in Sweden. Agron J 98:603–615. doi:10.2134/agronj2005.0224

    Article  CAS  Google Scholar 

  • Tully KL, Lawrence D (2011) Closing the loop: nutrient balances in organic and conventional coffee agroforests. J Sust Agr 35:671–695. doi:10.1080/10440046.2011.586599

    Article  Google Scholar 

  • Tully KL, Lawrence D (2012) Canopy and leaf composition drive patterns of nutrient release from pruning residues in a coffee agroforest. Ecol App 22(4):1330–1344

    Article  Google Scholar 

  • Tully KL, Lawrence D, Wood SW (2013) Organically managed coffee agroforests have larger soil phosphorus but smaller soil nitrogen pools. Biogeochemistry doi:10.1007/s10533-013-9842-4

  • Tully KL, Lawrence D, Scanlon TM (2012) More trees less loss: nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agr Ecosyst Environ 161:137–144. doi:10.1890/10-2342.1

    Article  CAS  Google Scholar 

  • Uehara G, Gillman GP (1981) The mineralogy, chemistry and physics of tropical soils with variable charge clays. Westview Press, Boulder

    Google Scholar 

  • Ulén B, Aronsson H, Torstensson G, Mattsson L (2005) Phosphorus and nitrogen turnover and risk of waterborne phosphorus emissions in crop rotations on a clay soil in southwest Sweden. Soil Use Manag 21:221–230. doi:10.1111/j.1475-2743.2005.tb00128.x

    Article  Google Scholar 

  • Van Noordwijk M, Lawson G, Soumare A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxley P (eds) Tree-crop interactions: a physiological approach. CAB International, Wallingford. pp 319–364

  • Vanlauwe B, Sanginga N, Merckx R (1997) Decomposition of four Leucaena and Senna prunings in alley cropping systems under sub-humid tropical conditions: the process and its modifiers. Soil Biol Biochem 29:131–137. doi:10.1016/S0038-0717(96)00301-X

    Article  CAS  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–573

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298. doi:10.2307/1939481

    Article  CAS  Google Scholar 

  • World Health Organization (1996) Guidelines for drinking water quality, vol. 2, 2nd ed. Health criteria and other supporting information. World Health Organization, Geneva, pp 313–324

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. Springer, New York

Download references

Acknowledgments

We would like to acknowledge the financial contributions of the Jefferson Scholars Foundation, the Raven Society, the Bankard Fund for Political Economy, the Center for Undergraduate Excellence, and the University of Virginia, to this research. Gabriela Soto facilitated the logistics of the fieldwork. We are grateful to our field and lab team at CATIE: Alejandra Hernández Guzmán, Amanda Schwantes, Blanca Salguero Londoño, Mauricio Scheelje, and Patricia Leandro. Finally, we would like to acknowledge the farmers of San Juan Norte, San Juan Sur, and Colorado for giving us access to their farms and welcoming us into their homes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine L. Tully.

Appendix

Appendix

See Figs. 7, 8, 9.

Fig. 7
figure 7

Rainfall and temperature throughout the study period (September 2008–October 2009) in the Central Valley of Costa Rica. Cumulative rainfall and mean daily minimum and maximum temperatures for each 28-day period prior to sample collection. Dashed line represents the mean monthly rainfall from 1942–2009 (CATIE meteorological data)

Fig. 8
figure 8

Each statistical model run during the analysis. The boxes represent key variables. The lines connect the response variables, which are higher up, to the dependent variables, which are lower in the diagram. The text describes the type of linear model used

Fig. 9
figure 9

Soil C, pH, and soil moisture in the top 10 cm in coffee agroforests in Costa Rica. Mean a total C, b pH, and c gravimetric soil moisture in soils collected from 0 to 10 cm in organic and conventional coffee agroforests (across species) throughout the study period (September 2008–October 2009). Closed circles indicate conventional agroforests (CAF; n = 4), and open circles indicate organic agroforests (OAF; n = 4). Inset of mean soil C, pH, and moisture dynamics across farms are also presented

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tully, K.L., Wood, S.A. & Lawrence, D. Fertilizer type and species composition affect leachate nutrient concentrations in coffee agroecosystems. Agroforest Syst 87, 1083–1100 (2013). https://doi.org/10.1007/s10457-013-9622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-013-9622-0

Keywords

Navigation