Skip to main content

Advertisement

Log in

Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The effect of different planting densities (100,000 and 167,000 plants ha−1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha−1 year−1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year−1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha−1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha−1 respectively, compared with 11.6 and 11 ton ha−1 for 100,000 plants ha−1. Growth rate in 167,000 plants ha−1 was higher than in 100,000 plants ha−1 (0.06 compared with 0.03 ton ha−1 day−1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha−1 year−1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha−1 year−1 (87.9 and 93.7 g kg−1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha−1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha−1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year−1 in conditions where phosphorus and potassium are not limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbot L, Murphy D (2007) What is soil biological fertility? In: Abbot L, Murphy D (eds) Soil biological fertility. Springer, Amsterdam

    Google Scholar 

  • Anwar F, Latif S, Ashraf M, Gilani A (2007) Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21:17–25

    Article  PubMed  CAS  Google Scholar 

  • AOAC (1984) Official methods of analysis, 14th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  • Boschini C, Dormond H, Castro A (2000) Composición química de la morera (Morus alba) para uso en la alimentación animal: densidades y frecuencias de poda. Agron Mesoam 11:41–49

    Google Scholar 

  • Calub B (1993) Evaluation of indigenous and naturalized multipurpose trees as alternative to Leucaena leucocephala in hillyland farming, seminar-workshop towards more effective utilization of resources for sustained development, Makati, Metro Manila, Philippines, Philippine Techn J

  • Dash S, Gupta N (2009) Effect of inorganic, organic and bio fertilizer on growth of hybrid Moringa oleifera (PKM 1). Science 4:630–635

    Google Scholar 

  • Drinkwater L, Schipanski M, Snapp S, Jackson L (2008) Ecological based nutrient management. In: Snapp S, Pound B (eds) Agricultural system: agroecology and rural innovation. Elsevier, Amsterdam, Netherlands, pp 159–209

  • Duke J (1983) Handbook of energy crops. Updated January 7th 1998, Retrieved October 5th 2010 from http://www.hort.purdue.edu/newcrop/duke_energy/Moringa_oleifera.html

  • Ella A, Jacobsen C, Stür W, Blair G (1989) Effect of plant density and cutting frequency on the productivity of four tree legumes. Trop Grassland 23:28–34

    Google Scholar 

  • FAO (1988) FAO/Unesco soil map of the world, revised legend, with corrections and updates. World soil resources report 60. FAO, Rome

  • Ferreira P, Faria D, Oliveira J, Carvalho A (2008) Moringa oleifera: bioactive compounds and nutritional potential. Rev de Nutrição 4:431–437

    Google Scholar 

  • Foidl N, Makkar H, Becker K (2001). The potential of Moringa oleifera for agricultural and industrial uses. What development potential for Moringa products? Dar Es Salaam

  • Hartley S, Nelson K, Gorman M (1995) The effect of fertiliser and shading on plant chemical composition and palatability to Orkney voles, Microtus arvalis orcadensis. Oikos 72:79–87

    Article  Google Scholar 

  • INETER (Instituto Nicaraguense de Estudios Territoriales) (2009) Boletín climático. Dirección general de meteorología, Managua

    Google Scholar 

  • Jiang G, Liu C (2006) Main diseases and pests on Moringa trees in Xishaungbanna. Trop Agric Sci Tech 4:358–366

    Google Scholar 

  • Jiménez F, Muschler R (2001) Introducción a la agroforestería. In: Jiménez F, Muschler R, Kopsell E (eds) Funciones y aplicaciones de sistemas agroforestales. CATIE, Costa Rica

    Google Scholar 

  • Jyothi G, Babu R (2007) Graded doses of nitrogen on drumstick (Moringa pterygosperma Goertn Var PKM-1). J Res ANGRAU 35:111–113

    Google Scholar 

  • Makkar H, Becker K (1996) Nutritional value and anti-nutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim Feed Sci Tech 63:211–228

    Article  CAS  Google Scholar 

  • Manh L, Nguyen N, Ngoi T (2005) Introduction and evaluation of Moringa oleifera for biomass production and as feed for goats in the Mekong delta. Livest Res Rural Dev 17:9

    Google Scholar 

  • Martin F, Ruberté R (1975) Edible leaves of the tropics. USDA, Puerto Rico

    Google Scholar 

  • Mommer L, Lenssen J, Huber H, Visser E, De Kroon H (2006) Ecophysiological determinants of plant performance under flooding: a comparative study among seven plant families. J Ecol 94:1117–1129

    Article  Google Scholar 

  • Morton J (1991) The horseradish tree, Moringa pterygosperma (Moringaceae)—a boon to arid lands? Econ Bot 45:318–333

    Article  Google Scholar 

  • Oliveira J, Silveira S, Vasconcelos I, Cavada B, Moreira R (1999) Compositional and nutritional attributes of seeds from the multiple purpose tree Moringa oleifera Lamarck. J Sci Food Agric 79:815–820

    Article  CAS  Google Scholar 

  • Oliveira J, Souto J, Santos R, Souto P, Maior Junior S (2009) Adubação com diferentes estercos no cultivo de moringa (Moringa oleifera Lam.). Rev Verde de Agroecol e Desenvolvimento Sustentavel 4:125–134

  • Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circ. 939. USDA, Washington, DC

  • Palada M, Chang L (2003) Suggested cultural practices for Moringa. Center. Pub # 03-545Asian Vegetable Research and Development

  • Pamo E, Boukila B, Tonfack L, Momo M, Kana J, Tendonkeng F (2005) Influence de la fumure organique, du NPK et du mélange des deux fertilisants sur la croissance de Moringa oleifera Lam. dans l’Ouest Cameroun. Livest Res for Rural Dev 17

  • Pezo D, Ibrahim M (1998) Sistemas Silvopastoriles. Modulos de enseñanza agroforestal no-2. CATIE, pp 111–123

  • Phengvichit V, Ledin S, Horne P, Ledin I (2006) Effects of different fertilisers and harvest frequencies on foliage and tuber yield and chemical composition of foliage from two cassava (Manihot esculenta, Crantz) varieties. Trop Subtrop Agroecosyst 6:177–187

    Google Scholar 

  • Ramachandran C, Peter K, Gopalakrishnan P (1980) Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Econ Bot 34:276–283

    Article  CAS  Google Scholar 

  • Reyes-Sánchez N, Spörndly E, Ledin I (2006a) Effect of feeding different levels of foliage of Moringa oleifera to creole dairy cows on intake, digestibility, milk production and composition. Livest Sci 1001:24–31

    Article  Google Scholar 

  • Reyes-Sánchez N, Ledin S, Ledin I (2006b) Biomass production and chemical composition of Moringa oleifera under different management regimes in Nicaragua. Agrofor Syst 66:231–242

    Article  Google Scholar 

  • Rodríguez C, Arias R, Quiñones J (1994) Efecto de la frecuencia de poda y el nivel de fertilización nitrogenada, sobre el rendimiento y calidad de la biomasa de Morera (Morus spp.) en el trópico seco de Guatemala. In: Benavidez J (ed) Arboles y arbustos forrajeros en América central, vol 2. Serie técnica # 236. CATIE, pp 515–529

  • Salmerón-Miranda F, Bath B, Eckersten H, Forkman J, Wisvtad M (2007) Aboveground nitrogen in relation to estimated total plant uptake in maize and bean. Nutrient Cycling Agroecosyst 79:125–139

    Article  Google Scholar 

  • SAS (2004) User guide, version 9.1.2. Statistical analysis system institute Inc.

  • Shelton H, Brewbaker J (1998) Leucaena leucocephala—the most widely used forage tree legume. In: Gutteridge R, Shelton H (eds) Forage tree legumes in tropical agriculture. Tropical Grassland Society of Australia Inc., Queensland

  • Simons A, Stewart J (1998) Gliricidia sepium—a multipurpose forage tree legume. In: Gutteridge R, Shelton H (eds) Forage tree legumes in tropical agriculture. Tropical Grassland Society of Australia Inc., Queensland

  • Soliva C, Kreuzer M, Foidl N, Foidl G, Machmüller A, Hess H (2005) Feeding value of whole and extracted Moringa oleifera leaves for ruminants and their effects on ruminal fermentation in vitro. Anim Feed Sci Tech 118:47–62

    Article  Google Scholar 

  • Szott L, Kass D (1993) Fertilizers in agroforestry systems. Agrofor Syst 23:157–176

    Article  Google Scholar 

  • Tanner J, Kapos V, Freskos S, Healey J, Theobald A (2009) Nitrogen and phosphorus fertilization of Jamaican montane forest trees. J Trop Ecol. doi:10.1017/S0266467400004375

    Google Scholar 

  • Toledo J, Shultze-Kraft R (1982) Metodología para la evaluación agronómica de pastos tropicales. In: Toledo J (ed) Manual para la evaluación agronómica. Red internacional de evaluación de pastos tropicales. Centro Internacional de Agricultura Tropical, pp 91–110

  • USDA (United States Department of Agriculture) (1995) Soil survey laboratory information manual. Lincoln, Nebraska, p 287

    Google Scholar 

  • Van Soest P, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral-detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Ventura J, Pulgar R (1997) Efecto de la densidad de siembra y frecuencia de corte sobre los components de la producción y follaje de yucca Manihot esculenta. Crantz Rev de Agronom 7:229–243

    Google Scholar 

Download references

Acknowledgments

The funding for this research provided by the Swedish International Development Agency (SIDA) is gratefully acknowledged. Dr. Lester Rocha and Johannes Forkman are also sincerely acknowledged for their help and support with the statistical analysis in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Halling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendieta-Araica, B., Spörndly, E., Reyes-Sánchez, N. et al. Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization. Agroforest Syst 87, 81–92 (2013). https://doi.org/10.1007/s10457-012-9525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-012-9525-5

Keywords

Navigation