Skip to main content

Advertisement

Log in

PML–RARa modulates the vascular signature of extracellular vesicles released by acute promyelocytic leukemia cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Oncogenic transformation is believed to impact the vascular phenotype and microenvironment in cancer, at least in part, through mechanisms involving extracellular vesicles (EVs). We explored these questions in the context of acute promyelocytic leukemia cells (NB4) expressing oncogenic fusion protein, PML–RARa and exquisitely sensitive to its clinically used antagonist, the all-trans retinoic acid (ATRA). We report that NB4 cells produce considerable numbers of EVs, which are readily taken up by cultured endothelial cells triggering their increased survival. NB4 EVs contain PML–RARa transcript, but no detectable protein, which is also absent in endothelial cells upon the vesicle uptake, thereby precluding an active intercellular trafficking of this oncogene in this setting. ATRA treatment changes the emission profile of NB4-related EVs resulting in preponderance of smaller vesicles, an effect that occurs in parallel with the onset of cellular differentiation. ATRA also increases IL-8 mRNA and protein content in NB4 cells and their EVs, while decreasing the levels of VEGF and tissue factor (TF). Endothelial cell uptake of NB4-derived EVs renders these cells more TF-positive and procoagulant, and this effect is diminished by pre-treatment of EV donor cells with ATRA. Profiling angiogenesis-related transcripts in intact and ATRA-treated APL cells and their EVs reveals multiple differences attributable to cellular responses and EV molecular packaging. These observations point to the potential significance of changes in the angiogenic signature and activity associated with EVs released from tumor cells subjected to targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APL:

Acute promyelocytic leukemia

ATO:

Arsenic trioxide

ATRA:

All-trans retinoic acid

EVs:

Extracellular vesicles

IL-8:

Interleukin 8

NTA:

Nanoparticle tracking analysis

PML–RARa:

Promyelocytic leukemia–retinoic acid receptor alpha

TF:

Tissue factor

TF-PCA:

TF-dependent procoagulant activity

VEGF:

Vascular endothelial growth factor

References

  1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951

    Article  PubMed  CAS  Google Scholar 

  2. Isakson P, Bjoras M, Boe SO, Simonsen A (2010) Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 116:2324–2331

    Article  PubMed  CAS  Google Scholar 

  3. Dos Santos GA, Kats L, Pandolfi PP (2013) Synergy against PML–RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J Exp Med 210:2793–2802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Choudhry A, DeLoughery TG (2012) Bleeding and thrombosis in acute promyelocytic leukemia. Am J Hematol 87:596–603

    Article  PubMed  Google Scholar 

  5. Chang H, Kuo MC, Shih LY, Dunn P, Wang PN, Wu JH, Lin TL, Hung YS, Tang TC (2012) Clinical bleeding events and laboratory coagulation profiles in acute promyelocytic leukemia. Eur J Haematol 88:321–328

    Article  PubMed  CAS  Google Scholar 

  6. Arbuthnot C, Wilde JT (2006) Haemostatic problems in acute promyelocytic leukaemia. Blood Rev 20:289–297

    Article  PubMed  CAS  Google Scholar 

  7. Ma G, Liu F, Lv L, Gao Y, Su Y (2013) Increased promyelocytic-derived microparticles: a novel potential factor for coagulopathy in acute promyelocytic leukemia. Ann Hematol 92:645–652

    Article  PubMed  CAS  Google Scholar 

  8. Gheldof D, Mullier F, Bailly N, Devalet B, Dogne JM, Chatelain B, Chatelain C (2014) Microparticle bearing tissue factor: a link between promyelocytic cells and hypercoagulable state. Thromb Res 133:433–439

    Article  PubMed  CAS  Google Scholar 

  9. Hatfield KJ, Evensen L, Reikvam H, Lorens JB, Bruserud O (2012) Soluble mediators released by acute myeloid leukemia cells increase capillary-like networks. Eur J Haematol 89:478–490

    Article  PubMed  CAS  Google Scholar 

  10. Kini AR, Peterson LC, Tallman MS, Lingen MW (2001) Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood 97:3919–3924

    Article  PubMed  CAS  Google Scholar 

  11. Coltella N, Percio S, Valsecchi R, Cuttano R, Guarnerio J, Ponzoni M, Pandolfi PP, Melillo G, Pattini L, Bernardi R (2014) HIF factors cooperate with PML–RARalpha to promote acute promyelocytic leukemia progression and relapse. EMBO Mol Med 6:640–650

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J (1997) Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 150:815–820

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Jothilingam P, Basu D, Dutta TK (2014) Angiogenesis and proliferation index in patients with acute leukemia: a prospective study. Bone Marrow Res. doi:10.1155/2014/634874

    PubMed  PubMed Central  Google Scholar 

  14. Rak JW, Hegmann EJ, Lu C, Kerbel RS (1994) Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J Cell Physiol 159:245–255

    Article  PubMed  CAS  Google Scholar 

  15. Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, Hicklin DJ, Tateno M, Bohlen P, Moore MA, Rafii S (2001) Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 98:10857–10862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Heine A, Held SA, Bringmann A, Holderried TA, Brossart P (2011) Immunomodulatory effects of anti-angiogenic drugs. Leukemia 25:899–905

    Article  PubMed  CAS  Google Scholar 

  17. Trujillo A, McGee C, Cogle CR (2012) Angiogenesis in acute myeloid leukemia and opportunities for novel therapies. J Oncol. doi:10.1155/2012/128608

    PubMed  PubMed Central  Google Scholar 

  18. Zheng PZ, Wang KK, Zhang QY, Huang QH, Du YZ, Zhang QH, Xiao DK, Shen SH, Imbeaud S, Eveno E, Zhao CJ, Chen YL, Fan HY, Waxman S, Auffray C, Jin G, Chen SJ, Chen Z, Zhang J (2005) Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA 102:7653–7658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang D, Jensen R, Gendeh G, Williams K, Pallavicini MG (2004) Proteome and transcriptome analysis of retinoic acid-induced differentiation of human acute promyelocytic leukemia cells, NB4. J Proteome Res 3:627–635

    Article  PubMed  CAS  Google Scholar 

  20. Shibakura M, Niiya K, Niiya M, Asaumi N, Yoshida C, Nakata Y, Tanimoto M (2005) Induction of CXC and CC chemokines by all-trans retinoic acid in acute promyelocytic leukemia cells. Leuk Res 29:755–759

    Article  PubMed  CAS  Google Scholar 

  21. Saito A, Sugawara A, Uruno A, Kudo M, Kagechika H, Sato Y, Owada Y, Kondo H, Sato M, Kurabayashi M, Imaizumi M, Tsuchiya S, Ito S (2007) All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling. Endocrinology 148:1412–1423

    Article  PubMed  CAS  Google Scholar 

  22. Tallman MS, Lefebvre P, Baine RM, Shoji M, Cohen I, Green D, Kwaan HC, Paietta E, Rickles FR (2004) Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J Thromb Haemost 2:1341–1350

    Article  PubMed  CAS  Google Scholar 

  23. Zhu J, Guo WM, Yao YY, Zhao WL, Pan L, Cai X, Ju B, Sun GL, Wang HL, Chen SJ, Chen GQ, Caen J, Chen Z, Wang ZY (1999) Tissue factors on acute promyelocytic leukemia and endothelial cells are differently regulated by retinoic acid, arsenic trioxide and chemotherapeutic agents. Leukemia 13:1062–1070

    Article  PubMed  CAS  Google Scholar 

  24. Shibakura M, Niiya K, Kiguchi T, Shinagawa K, Ishimaru F, Ikeda K, Namba M, Nakata Y, Harada M, Tanimoto M (2002) Simultaneous induction of matrix metalloproteinase-9 and interleukin 8 by all-trans retinoic acid in human PL-21 and NB4 myeloid leukaemia cells. Br J Haematol 118:419–425

    Article  PubMed  CAS  Google Scholar 

  25. Bobrie A, Thery C (2013) Exosomes and communication between tumours and the immune system: are all exosomes equal? Biochem Soc Trans 41:263–267

    Article  PubMed  CAS  Google Scholar 

  26. Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, Demichelis F, Freeman MR (2009) Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69:5601–5609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rak J (2013) Extracellular vesicles—biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 4:21. doi:10.3389/fphar.2013.00021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Koch R, Demant M, Aung T, Diering N, Cicholas A, Chapuy B, Wenzel D, Lahmann M, Guntsch A, Kiecke C, Becker S, Hupfeld T, Venkataramani V, Ziepert M, Opitz L, Klapper W, Trumper L, Wulf GG (2014) Populational equilibrium through exosome-mediated Wnt signaling in tumor progression of diffuse large B-cell lymphoma. Blood 123:2189–2198

    Article  PubMed  CAS  Google Scholar 

  29. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  PubMed  CAS  Google Scholar 

  30. Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE (2010) Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood 115:1755–1764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Huan J, Hornick NI, Shurtleff MJ, Skinner AM, Goloviznina NA, Roberts CT Jr, Kurre P (2013) RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res 73:918–929

    Article  PubMed  CAS  Google Scholar 

  32. Cai J, Wu G, Tan X, Han Y, Chen C, Li C, Wang N, Zou X, Chen X, Zhou F, He D, Zhou L, Jose PA, Zeng C (2014) Transferred BCR/ABL DNA from K562 extracellular vesicles causes chronic myeloid leukemia in immunodeficient mice. PLoS One 9:e105200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Corrado C, Raimondo S, Saieva L, Flugy AM, De LG, Alessandro R (2014) Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett 348:71–76

    Article  PubMed  CAS  Google Scholar 

  34. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    Article  PubMed  CAS  Google Scholar 

  35. Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801

    Article  PubMed  CAS  Google Scholar 

  36. Skog J, Wurdinger T, van RS, Meijer DH, Gainche L, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee TH, Chennakrishnaiah S, Audemard E, Montermini L, Meehan B, Rak J (2014) Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem Biophys Res Commun 451:295–301

    Article  PubMed  CAS  Google Scholar 

  39. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar CM, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:833–891

    Article  CAS  Google Scholar 

  40. Garnier D, Magnus N, Lee TH, Bentley V, Meehan B, Milsom C, Montermini L, Kislinger T, Rak J (2012) Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem 287:43565–43572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–1556

    Article  PubMed  CAS  Google Scholar 

  42. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106:3794–3799

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jaworski E, Narayanan A, Van DR, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F (2014) Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 289:22284–22305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yu J, May L, Milsom C, Anderson GM, Weitz JI, Luyendyk JP, Broze G, Mackman N, Rak J (2008) Contribution of host-derived tissue factor to tumor neovascularization. Arterioscler Thromb Vasc Biol 28:1975–1981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cai H, Chen H, Yi T, Daimon CM, Boyle JP, Peers C, Maudsley S, Martin B (2013) VennPlex—a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints. PLoS One 8:e53388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yu JL, Rak JW (2004) Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2:2065–2067

    Article  PubMed  CAS  Google Scholar 

  47. Rak J, Mitsuhashi Y, Bayko L, Filmus J, Sasazuki T, Kerbel RS (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55:4575–4580

    PubMed  CAS  Google Scholar 

  48. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  49. Mackman N (2008) Triggers, targets and treatments for thrombosis. Nature 451:914–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Davila M, Robles-Carrillo L, Unruh D, Huo Q, Gardiner C, Sargent IL, Adam M, Woodhams BJ, Francis JL, Bogdanov VY, Amirkhosravi A (2014) Microparticle association and heterogeneity of tumor-derived tissue factor in plasma: is it important for coagulation activation? J Thromb Haemost 12:186–196

    Article  PubMed  CAS  Google Scholar 

  51. Geddings JE, Mackman N (2013) Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 122:1873–1880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. D’Asti E, Magnus N, Meehan B, Garnier D, Rak J (2014) Genetic basis of thrombosis in cancer. Semin Thromb Hemost 40:284–295

    Article  PubMed  CAS  Google Scholar 

  53. Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, De LG, Alessandro R (2014) Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer 13:169. doi:10.1186/1476-4598-13-169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Poupot M, Fournie JJ (2003) Spontaneous membrane transfer through homotypic synapses between lymphoma cells. J Immunol 171:2517–2523

    Article  PubMed  CAS  Google Scholar 

  55. Zhu X, You Y, Li Q, Zeng C, Fu F, Guo A, Zhang H, Zou P, Zhong Z, Wang H, Wu Y, Li Q, Kong F, Chen Z (2014) BCR–ABL1-positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia 28:1666–1675

  56. Wiseman DH (2011) Donor cell leukemia: a review. Biol Blood Marrow Transplant 17:771–789

    Article  PubMed  Google Scholar 

  57. Tsai WH, Hsu HC, Lin CC, Ho CK, Kou YR (2007) Role of interleukin-8 and growth-regulated oncogene-alpha in the chemotactic migration of all-trans retinoic acid-treated promyelocytic leukemic cells toward alveolar epithelial cells. Crit Care Med 35:879–885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our McGill colleagues for their assistance: J. Mui (Electron Microscopy) and M. Fu (Confocal Microscopy). The project was supported by operating grants to J. R. from the Canadian Institutes of Health Research (CIHR Foundation Grant; MOP 111119, 133424). The infrastructure support was provided by Fonds de Recherche en Santé du Québec (FRSQ). J. R. is Jack Cole Chair in Pediatric Hematology/Oncology. Y. F. was supported by Postdoctoral Fellowship from the Cole Foundation, National Natural Science Foundation of China for Young Scientists (30801062), China Scholarship Council (2009831055) and Scholarship of Renji Hospital Sponsored Overseas Project; DG was supported by Michael Whitehead Fellowship Endowment to Montreal Children’s Hospital Foundation, and EDA was a recipient of the FRSQ Doctoral Studentship and Piccoli Research Fund.

Contributions

YF—designed, conducted and interpreted the experiments, and wrote the manuscript. This included culturing and analysis of NB4 and HUVEC cells, Western blotting ELISA, NTA and other assays. DG, THL, EDA, LM and BM—established the assays, conducted experiments provided intellectual input and revised the manuscript. This included calibration of NTA assays, RNA and Western protocols, EV transfer experiments, FACS and other experiments; JR—conceived and designed the study, interpreted the data, administered and supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Rak.

Ethics declarations

Conflict of interests

J.R is the inventor on a pending patent application describing identification of oncogenes in the cargo of extracellular vesicles. Otherwise authors declare no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Garnier, D., Lee, T.H. et al. PML–RARa modulates the vascular signature of extracellular vesicles released by acute promyelocytic leukemia cells. Angiogenesis 19, 25–38 (2016). https://doi.org/10.1007/s10456-015-9486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-015-9486-1

Keywords

Navigation