Skip to main content

Advertisement

Log in

Inhibition of tumor-associated αvβ3 integrin regulates the angiogenic switch by enhancing expression of IGFBP-4 leading to reduced melanoma growth and angiogenesis in vivo

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

A more complete understanding of the mechanisms that regulate the angiogenic switch, which contributes to the conversion of small dormant tumors to actively growing malignancies, is important for the development of more effective anti-angiogenic strategies for cancer therapy. While significant progress has been made in understanding the complex mechanisms by which integrin αvβ3 expressed in endothelial cells governs angiogenesis, less is known concerning the ability of αvβ3 expressed within the tumor cell compartment to modulate the angiogenic output of a tumor. Here we provide evidence that αvβ3 expressed in melanoma cells may contribute to the suppression of IGFBP-4, an important negative regulator of IGF-1 signaling. Given the multiple context-dependent roles for αvβ3 in angiogenesis and tumor progression, our novel findings provide additional molecular insight into how αvβ3 may govern the angiogenic switch by a mechanism associated with a p38 MAPK and matrix metalloproteinases-dependent regulation of the endogenous angiogenesis inhibitor IGFBP-4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Varney ML, Jonansson SL, Singh RK (2005) Tumor-associated infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A. Melanoma Res 15:417–425

    Article  CAS  PubMed  Google Scholar 

  2. Demirkesen C, Buyukpinarbasili N, Ramazangoglu R, Ollguz O, Mandel NM et al (2006) The correlation of angiogenesis with metastasis in primary cutaneous melanoma: a comparative analysis of microvessel density, expression of vascular endothelial growth factor and basic fibroblast growth factor. Pathology 38:132–137

    Article  CAS  PubMed  Google Scholar 

  3. Massi D, Franchi A, Borgognoni L, Paglierani M, Reali UM et al (2002) Tumor angiogenesis as a prognostic factor in thick cutaneous malignant melanoma. A quantitative morphological analysis. Virchow Arch 440:22–28

    Article  CAS  Google Scholar 

  4. Wu S, Singh S, Varney ML, Kindle S, Singh RK (2012) Modulation of CXCL-8 expression in human melanoma cells regulates tumor growth, angiogenesis, invasion, and metastasis. Cancer Med 3:306–317

    Article  Google Scholar 

  5. Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325

    Article  PubMed  Google Scholar 

  6. Contois L, Akalu A, Brooks PC (2009) Integrins as functional hubs in the regulation of pathological angiogenesis. Semin Cancer Biol 19:318–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Indraccolo S (2013) Insights into the regulation of tumor dormancy by angiogenesis in experimental tumors. Adv Exp Med Biol 734:37–52

    Article  PubMed  Google Scholar 

  8. Kang SY, Watnick RS (2008) Regulation of tumor dormancy as a function of tumor-mediated paracrine regulation of stromal Tsp-1 and VEGF. APMIS 116:638–647

    Article  CAS  PubMed  Google Scholar 

  9. Almog N, Ma L, Rachowdhury R, Schwager C, Erber R et al (2009) Transcriptional switch of dormant tumors to fast growing angiogenic phenotype. Cancer Res 69:836–944

    Article  CAS  PubMed  Google Scholar 

  10. Moserle L, Amadori A, Indraccolo S (2009) The angiogenic switch: implications in the regulation of tumor dormancy. Curr Mol Med 8:935–941

    Article  Google Scholar 

  11. Chung AS, Lee J, Ferrara N (2010) Targeting the tumor vasculature: insight from physiological angiogenesis. Nat Rev Cancer 10:505–513

    Article  CAS  PubMed  Google Scholar 

  12. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1369

    Article  CAS  PubMed  Google Scholar 

  14. Ebos JM, Lee CR, Kerbel RS (2009) Tumor and host-mediated pathways of resistance and disease progression in response to anti-angiogenic therapy. Clin Cancer Res 16:5020–5025

    Article  Google Scholar 

  15. Ebos JM, Lee CR, Cruz-Munzo W, Bjarmason GA, Christensen JG et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  CAS  PubMed  Google Scholar 

  16. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increase local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hangai M, Kitaya N, Chan CK, Kim JJ, Werb Z et al (2002) Matrix metaaloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am J Pathol 161:1429–1437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chen Q, Jin M, Yang F, Zhu J, Xiao Q et al (2013) Matrix metalloproteinases: inflammatory regulators of cell behavior in vascular formation and remodeling. Mediators Inflamm. doi:10.1155/2013/928315

    Google Scholar 

  19. Xu X, Rodriguez D, Petitclerc E, Kim JJ, Hangai M et al (2001) Proteolytic exposure of a cryptic site within collagen type-IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154:1069–1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Assal Y, Mie M, Kobatake E (2013) The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures. Biomaterials 34:3315–3323

    Article  CAS  PubMed  Google Scholar 

  22. Davis GE (2011) Angiogenesis and proteinase: influence on vascular morphogenesis, stabilization and regression. Drug Discov Today Dis Models 8:13–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sweet DT, Chen Z, Wiley DM, Bautch VL, Tzima E (2012) The adaptor protein Shc integrates growth factor and ECM signaling during postnatal angiogenesis. Blood 119:1946–1955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195:122–143

    Article  CAS  PubMed  Google Scholar 

  25. Petitclerc E, Boutaud A, Prestrayko A, Xu J, Sado Y et al (2000) New functions for non-collagenous domains of human collagen type-IV: novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275:8051–8061

    Article  CAS  PubMed  Google Scholar 

  26. Ren B, Yee KO, Lawer J, Khosrav-Far J (2006) Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta 1765:178–188

    CAS  PubMed  Google Scholar 

  27. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  CAS  PubMed  Google Scholar 

  28. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569–571

    Article  CAS  PubMed  Google Scholar 

  29. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T et al (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  CAS  PubMed  Google Scholar 

  30. Delbaldo C, Raymond E, Vera K, Hammershaimb L, Kaucic K et al (2008) Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against αvβ3 integrin receptor, in patients with advanced solid tumors. Investig New Drug 26:35–43

    Article  CAS  Google Scholar 

  31. Scaringi C, Minniti G, Caporello P, Enrici RM (2012) Integrin inhibitor cilengitide for the treatment of glioblastoma: a brief overview of current clinical results. Anticancer Res 32:4213–4223

    CAS  PubMed  Google Scholar 

  32. Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD et al (2002) Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nat Med 8:27–34

    Article  CAS  PubMed  Google Scholar 

  33. Taverna D, Moher H, Crowley D, Borsig L, Varki A et al (2004) Increased primary tumor growth in mice null for β3 or β3 and β5 integrins or selectins. Proc Natl Acad Sci USA 101:763–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Feng W, McCabe P, Mahabeleshwar GH, Samanath PR, Phillips DR et al (2008) The angiogenic response is dictated by β3 integrin on bone marrow-derived cells. J Cell Biol 182:1145–1157

    Article  Google Scholar 

  35. Cretu A, Roth JM, Caunt M, Akalu A, Policarpio D et al (2007) Disruption of endothelial cell interactions with the novel HU177 cryptic collagen epitope inhibits angiogenesis. Clin Cancer Res 13:3068–3078

    Article  CAS  PubMed  Google Scholar 

  36. Akalu A, Roth JM, Caunt M, Policarpio D, Liebes L et al (2007) Inhibition of angiogenesis and tumor metastasis by targeting a matrix immobilized cryptic extracellular matrix epitope in laminin. Cancer Res 67:4353–4363

    Article  CAS  PubMed  Google Scholar 

  37. Contois LW, Nugent DP, Caron JM, Cretu A, Tweedie E et al (2012) Insulin-like growth factor binding protein-4 differentially inhibits growth factor-induced angiogenesis. J Biol Chem 287:179–189

    Article  Google Scholar 

  38. Smith LEH, Shen W, Perruzzi C, Soker S, Kinose F et al (1999) Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med 12:1390–1395

    Article  Google Scholar 

  39. Moreno MJ, Ball M, Andrade MF, Mcdermid A, Stanimirovic DB (2006) Insulin-like growth factor binding protein-4 (IGFBP-4) is a novel anti-angiogenic and anti-tumorigenic mediator secreted by dibutyryl cyclic AMP (dB-cAMP)-differentiated glioblastoma cells. Glia 63:845–857

    Article  Google Scholar 

  40. Beattie J, McIntosh L, Walle V (2010) Cross talk between the insulin-like growth factor (IGF) axis and membrane integrins to regulate cell physiology. J Cell Physiol 224:605–611

    Article  CAS  PubMed  Google Scholar 

  41. Rossello A, Orlandini E, Carelli P, Rapposelli S, Macchia M et al (2004) New N-arylsulfonyl-N-alkoxyaminoacetohydroxamic acids as selective inhibitors of gelatinase A (MMP2). Bioorg Med Chem 12:2441–2450

    Article  CAS  PubMed  Google Scholar 

  42. Freimark B, Clark D, Pernasetti F, Nickel J, Myszka D et al (2007) Targeting of humanized antibody D93 to sites of angiogenesis and tumor growth by binding to multiple epitopes on denatured collagens. Mol Immunol 44:3741–3750

    Article  CAS  PubMed  Google Scholar 

  43. Mondy WL, Cameron D, Timmermans JP, De Clerck N, Sasov AC et al (2009) Micro-CT or corrosion casts for use in the computer-aided design of microvasculature. Tissue Eng Part C Methods 15:729–738

    Article  CAS  PubMed  Google Scholar 

  44. Felding-Habermann B, Mueller BM, Romerdahi CA, Cheresh DA (1992) Involvement of integrin alpha v expression in human melanoma tumorigenicity. J Clin Investig 89:2018–2022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Durai R, Davis M, Yang W, Yang SY, Seifalian A et al (2006) Biology of insulin-like growth factor binding protein-4 and its role in cancer. Int J Oncol 28:1317–1325

    CAS  PubMed  Google Scholar 

  46. Yu JZ, Warycha MA, Christos PJ, Darvishian F, Yee H et al (2008) Assessing the clinical utility of measuring insulin-like growth factor binding proteins in tissues and sera from melanoma patients. J Transl Med 6:70. doi:10.1186/1479-5876-6-70

  47. Estrada Y, Dong J, Ossowski L (2009) Positive crosstalk between Erk and p38 in melanoma stimulates migration and in vivo proliferation. Pigment Cell Melanoma Res 22:66–76

    Article  CAS  PubMed  Google Scholar 

  48. Hennig T, Mogensen C, Kirsch J, Pohl U, Gloe T et al (2011) Shear stress induces the release of an endothelial elastase: role in integrin αvβ3-mediated FGF-2 release. Vasc Res 48:453–464

    Article  CAS  Google Scholar 

  49. Nakamura M, Miyamoto S, Maeda H, Ishii G, Hasebe T et al (2005) Matrix metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like growth factor bioavailability. Biochem Biophys Res Commun 333:1011–11016

    Article  CAS  PubMed  Google Scholar 

  50. Prudova A, auf dem Keller U, Butler GS, Overall CM (2010) Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics. doi:10.1074/mcp.M000050-MCP201

    Google Scholar 

  51. Denkert C, Siegert A, Leclere A, Turznski A, Hauptmann S (2002) An inhibitor of stress-activated MAP-kinase reduces invasion and MMP-2 expression of malignant melanoma cells. Clin Exp Metastasis 19:79–85

    Article  CAS  PubMed  Google Scholar 

  52. Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC (2012) TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer. doi:10.1186/1471-2407-12-26

    Google Scholar 

  53. Reynolds AR, Reynolds LE, Nagel TE, Robinson SD, Hicklin DJ et al (2004) Elevated FLK1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin-deficient mice. Cancer Res 64:8643–8650

    Article  CAS  PubMed  Google Scholar 

  54. Waston RA, Pitchford SC, Reynolds LE, Direkze N, Alison MR et al (2010) Deficiency of bone marrow β3-integrin enhances non-functional neovascularization. Am J Pathol 220:435–445

    Google Scholar 

  55. Steri V, Ellison TS, Gontarczyk AM, Weilbaecher K, Scheider JG et al (2014) Acute depletion of endothelial β3-integrin transiently inhibits tumor growth and angiogenesis in mice. Circ Res 114:79–91

    Article  CAS  PubMed  Google Scholar 

  56. Robinson SD, Hodivala-Dilke KM (2011) The role of β3-integrins in tumor angiogenesis: context is everything. Curr Opin Cell Biol 23:630–670

    Article  CAS  PubMed  Google Scholar 

  57. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA et al (1996) Definition of two angiogenic pathways by distinct αv integrins. Science 270:1500–1502

    Article  Google Scholar 

  58. Lorger M, Krueger JS, O’Neal M, Staflin K, Felding-Habermann B (2009) Activation of tumor cell integrin αvβ3 controls angiogenic and metastatic growth in the brain. Proc Natl Acad Sci USA 106:10666–10671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Gloe T, Sohn HY, Meininger GA, Pohl U (2002) Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin αvβ3. J Biol Chem 277:23453–23458

    Article  CAS  PubMed  Google Scholar 

  60. Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA (1996) Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin αvβ3 during angiogenesis. J Clin Investig 98:426–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Bao W, Stomblad S (2004) Integrin αv-mediated inactivation of p53 controls a MEK1-dependent melanoma cell survival pathway in three-dimensional collagen. J Cell Biol 167:745–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Teodora JG, Parker AE, Zhu X, Green MR (2006) P53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313:968–997

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health grants CA91645 (to P.C.B), Grant HL65301 (to R.F), Grants HL083151 and P20RR15555 (Protein, Nucleic Acid Analysis) to (C.P.H.V.), and Grant P20 RR181789 (Bioinformatics Core) to D. M. Wojchowski. This work was also supported by NIH Center of Biomedical Research Excellence 5P30GM103392 (PI: R. Friesel), the Maine Cancer Foundation (MCF) grant to L. W. C., and by institutional support from the Maine Medical Center.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Brooks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contois, L.W., Akalu, A., Caron, J.M. et al. Inhibition of tumor-associated αvβ3 integrin regulates the angiogenic switch by enhancing expression of IGFBP-4 leading to reduced melanoma growth and angiogenesis in vivo. Angiogenesis 18, 31–46 (2015). https://doi.org/10.1007/s10456-014-9445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-014-9445-2

Keywords

Navigation