Skip to main content

Advertisement

Log in

Ribonuclease 4 protects neuron degeneration by promoting angiogenesis, neurogenesis, and neuronal survival under stress

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Altered RNA processing is an underlying mechanism of amyotrophic lateral sclerosis (ALS). Missense mutations in a number of genes involved in RNA function and metabolisms are associated with ALS. Among these genes is angiogenin (ANG), the fifth member of the vertebrate-specific, secreted ribonuclease superfamily. ANG is an angiogenic ribonuclease, and both its angiogenic and ribonucleolytic activities are important for motor neuron health. Ribonuclease 4 (RNASE4), the fourth member of this superfamily, shares the same promoters with ANG and is co-expressed with ANG. However, the biological role of RNASE4 is unknown. To determine whether RNASE4 is involved in ALS pathogenesis, we sequenced the coding region of RNASE4 in ALS and control subjects and characterized the angiogenic, neurogenic, and neuroprotective activities of RNASE4 protein. We identified an allelic association of SNP rs3748338 with ALS and demonstrated that RNASE4 protein is able to induce angiogenesis in in vitro, ex vivo, and in vivo assays. RNASE4 also induces neural differentiation of P19 mouse embryonal carcinoma cells and mouse embryonic stem cells. Moreover, RNASE4 not only stimulates the formation of neurofilaments from mouse embryonic cortical neurons, but also protects hypothermia-induced degeneration. Importantly, systemic treatment with RNASE4 protein slowed weight loss and enhanced neuromuscular function of SOD1 G93A mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  2. Cho S, Beintema JJ, Zhang J (2005) The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 85:208–220

    Article  PubMed  CAS  Google Scholar 

  3. Cho S, Zhang J (2007) Zebrafish ribonucleases are bactericidal: implications for the origin of the vertebrate RNase A superfamily. Mol Biol Evol 24:1259–1268

    Article  PubMed  CAS  Google Scholar 

  4. Rosenberg HF, Tenen DG, Ackerman SJ (1989) Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci USA 86:4460–4464

    Article  PubMed  CAS  Google Scholar 

  5. Barker RL, Loegering DA, Ten RM, Hamann KJ, Pease LR, Gleich GJ (1989) Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol 143:952–955

    PubMed  CAS  Google Scholar 

  6. Fredens K, Dahl R, Venge P (1982) The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X. J Allergy Clin Immunol 70:361–366

    Article  PubMed  CAS  Google Scholar 

  7. Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, Fu Q, Tchernev VT, Wang M, Schweitzer B et al (2004) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173:6134–6142

    PubMed  CAS  Google Scholar 

  8. Hamann KJ, Barker RL, Loegering DA, Gleich GJ (1987) Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis. J Parasitol 73:523–529

    Article  PubMed  CAS  Google Scholar 

  9. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428–4434

    PubMed  CAS  Google Scholar 

  10. Rosenberg HF, Domachowske JB (2001) Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 70:691–698

    PubMed  CAS  Google Scholar 

  11. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486

    Article  PubMed  CAS  Google Scholar 

  12. Li S, Hu GF (2010) Angiogenin-mediated rRNA transcription in cancer and neurodegeneration. Int J Biochem Mol Biol 1:26–35

    PubMed  Google Scholar 

  13. Xu ZP, Tsuji T, Riordan JF, Hu GF (2002) The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem Biophys Res Commun 294:287–292

    Article  PubMed  CAS  Google Scholar 

  14. Xu ZP, Tsuji T, Riordan JF, Hu GF (2003) Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression. Biochemistry 42:121–128

    Article  PubMed  CAS  Google Scholar 

  15. Yoshioka N, Wang L, Kishimoto K, Tsuji T, Hu GF (2006) A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc Natl Acad Sci USA 103:14519–14524

    Article  PubMed  CAS  Google Scholar 

  16. Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285:10959–10968

    Article  PubMed  CAS  Google Scholar 

  17. Yamasaki S, Ivanov P, Hu GF, Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185:35–42

    Article  PubMed  CAS  Google Scholar 

  18. Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P (2011) Angiogenin-Induced tRNA Fragments Inhibit Translation Initiation. Mol Cell 43:613–623

    Article  PubMed  CAS  Google Scholar 

  19. Thompson DM, Lu C, Green PJ, Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14:2095–2103

    Article  PubMed  CAS  Google Scholar 

  20. Hofsteenge J, Vicentini A, Zelenko O (1998) Ribonuclease 4, an evolutionarily highly conserved member of the superfamily. Cell Mol Life Sci 54:804–810

    Article  PubMed  CAS  Google Scholar 

  21. Shapiro R, Fett JW, Strydom DJ, Vallee BL (1986) Isolation and characterization of a human colon carcinoma-secreted enzyme with pancreatic ribonuclease-like activity. Biochemistry 25:7255–7264

    Article  PubMed  CAS  Google Scholar 

  22. Dyer KD, Rosenberg HF (2005) The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression. Nucleic Acids Res 33:1077–1086

    Article  PubMed  CAS  Google Scholar 

  23. Futami J, Tsushima Y, Murato Y, Tada H, Sasaki J, Seno M, Yamada H (1997) Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol 16:413–419

    Article  PubMed  CAS  Google Scholar 

  24. Strydom DJ (1998) The angiogenins. Cell Mol Life Sci 54:811–824

    Article  PubMed  CAS  Google Scholar 

  25. Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J et al (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413

    Article  PubMed  CAS  Google Scholar 

  26. Wu D, Yu W, Kishikawa H, Folkerth RD, Iafrate AJ, Shen Y, Xin W, Sims K, Hu GF (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 62:609–617

    Article  PubMed  CAS  Google Scholar 

  27. Kieran D, Sebastia J, Greenway MJ, King MA, Connaughton D, Concannon CG, Fenner B, Hardiman O, Prehn JH (2008) Control of motoneuron survival by angiogenin. J Neurosci 28:14056–14061

    Article  PubMed  CAS  Google Scholar 

  28. Subramanian V, Feng Y (2007) A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum Mol Genet 16:1445–1453

    Article  PubMed  CAS  Google Scholar 

  29. Baumer D, Ansorge O, Almeida M, Talbot K (2010) The role of RNA processing in the pathogenesis of motor neuron degeneration. Expert Rev Mol Med 12:e21

    Article  PubMed  Google Scholar 

  30. van Blitterswijk M, Landers JE (2010) RNA processing pathways in amyotrophic lateral sclerosis. Neurogenetics 11:275–290

    Article  PubMed  CAS  Google Scholar 

  31. Strong MJ (2010) The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 288:1–12

    Article  PubMed  CAS  Google Scholar 

  32. Holloway DE, Hares MC, Shapiro R, Subramanian V, Acharya KR (2001) High-level expression of three members of the murine angiogenin family in Escherichia coli and purification of the recombinant proteins. Protein Expr Purif 22:307–317

    Article  PubMed  CAS  Google Scholar 

  33. Shapiro R, Weremowicz S, Riordan JF, Vallee BL (1987) Ribonucleolytic activity of angiogenin: essential histidine, lysine, and arginine residues. Proc Natl Acad Sci USA 84:8783–8787

    Article  PubMed  CAS  Google Scholar 

  34. Bibel M, Richter J, Lacroix E, Barde YA (2007) Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc 2:1034–1043

    Article  PubMed  CAS  Google Scholar 

  35. Shapiro R, Fox EA, Riordan JF (1989) Role of lysines in human angiogenin: chemical modification and site-directed mutagenesis. Biochemistry 28:1726–1732

    Article  PubMed  CAS  Google Scholar 

  36. Messmore JM, Fuchs DN, Raines RT (1995) Ribonuclease a: revealing structure-function relationships with semisynthesis. J Am Chem Soc 117:8057–8060

    Article  PubMed  CAS  Google Scholar 

  37. Di Liddo R, Dalzoppo D, Baiguera S, Conconi MT, Dettin M, Parnigotto PP, Grandi C (2010) In vitro biological activity of bovine milk ribonuclease-4. Mol Med Report 3:127–132

    Google Scholar 

  38. Donovan D, Brown NJ, Bishop ET, Lewis CE (2001) Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4:113–121

    Article  PubMed  CAS  Google Scholar 

  39. Masson VV, Devy L, Grignet-Debrus C, Bernt S, Bajou K, Blacher S, Roland G, Chang Y, Fong T, Carmeliet P et al (2002) Mouse aortic ring assay: a new approach of the molecular genetics of angiogenesis. Biol Proced Online 4:24–31

    Article  CAS  Google Scholar 

  40. Akhtar N, Dickerson EB, Auerbach R (2002) The sponge/matrigel angiogenesis assay. Angiogenesis 5:75–80

    Article  PubMed  CAS  Google Scholar 

  41. Bain G, Ray WJ, Yao M, Gottlieb DI (1994) From embryonal carcinoma cells to neurons: the P19 pathway. BioEssays 16:343–348

    Article  PubMed  CAS  Google Scholar 

  42. McBurney MW, Rogers BJ (1982) Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev Biol 89:503–508

    Article  PubMed  CAS  Google Scholar 

  43. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  44. Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103:389–398

    Article  PubMed  CAS  Google Scholar 

  45. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  PubMed  CAS  Google Scholar 

  46. Cho GW, Kang BY, Kim SH (2010) Human angiogenin presents neuroprotective and migration effects in neuroblastoma cells. Mol Cell Biochem 340:133–141

    Article  PubMed  CAS  Google Scholar 

  47. Li S, Yu W, Kishikawa H, Hu GF (2010) Angiogenin prevents serum withdrawal-induced apoptosis of P19 embryonal carcinoma cells. FEBS J 277:3575–3587

    Article  PubMed  CAS  Google Scholar 

  48. Sebastia J, Kieran D, Breen B, King MA, Netteland DF, Joyce D, Fitzpatrick SF, Taylor CT, Prehn JH (2009) Angiogenin protects motoneurons against hypoxic injury. Cell Death Differ 16:1238–1247

    Article  PubMed  CAS  Google Scholar 

  49. Steidinger TU, Standaert DG, Yacoubian TA (2011) A neuroprotective role for angiogenin in models of Parkinson’s disease. J Neurochem 116:334–341

    Article  PubMed  CAS  Google Scholar 

  50. Subramanian V, Crabtree B, Acharya KR (2008) Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum Mol Genet 17:130–149

    Article  PubMed  CAS  Google Scholar 

  51. Moroianu J, Riordan JF (1994) Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci USA 91:1677–1681

    Article  PubMed  CAS  Google Scholar 

  52. Tsuji T, Sun Y, Kishimoto K, Olson KA, Liu S, Hirukawa S, Hu GF (2005) Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 65:1352–1360

    Article  PubMed  CAS  Google Scholar 

  53. Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci USA 93:3155–3160

    Article  PubMed  CAS  Google Scholar 

  54. Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, Hall ED (1996) Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 39:147–157

    Article  PubMed  CAS  Google Scholar 

  55. Danzeisen R, Schwalenstoecker B, Gillardon F, Buerger E, Krzykalla V, Klinder K, Schild L, Hengerer B, Ludolph AC, Dorner-Ciossek C et al (2006) Targeted antioxidative and neuroprotective properties of the dopamine agonist pramipexole and its nondopaminergic enantiomer SND919CL2x [(+)2-amino-4,5,6,7-tetrahydro-6-Lpropylamino-benzathiazole dihydrochloride]. J Pharmacol Exp Ther 316:189–199

    Article  PubMed  CAS  Google Scholar 

  56. Carmeliet P (2008) Neuro-vascular link: from genetic insights to therapeutic perspectives. Bull Mem Acad R Med Belg 163:445–451 (discussion 451–442)

    PubMed  CAS  Google Scholar 

  57. Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Carmeliet P (2009) The neurovascular link in health and disease: an update. Trends Mol Med 15:439–451

    Article  PubMed  CAS  Google Scholar 

  58. Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292

    Article  PubMed  CAS  Google Scholar 

  59. Lambrechts D, Lafuste P, Carmeliet P, Conway EM (2006) Another angiogenic gene linked to amyotrophic lateral sclerosis. Trends Mol Med 12:345–347

    Article  PubMed  CAS  Google Scholar 

  60. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138

    Article  PubMed  CAS  Google Scholar 

  61. Zheng C, Nennesmo I, Fadeel B, Henter JI (2004) Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 56:564–567

    Article  PubMed  CAS  Google Scholar 

  62. Shapiro R, Vallee BL (1989) Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry 28:7401–7408

    Article  PubMed  CAS  Google Scholar 

  63. Hu GF, Riordan JF, Vallee BL (1997) A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc Natl Acad Sci USA 94:2204–2209

    Article  PubMed  CAS  Google Scholar 

  64. Bratt-Leal AM, Carpenedo RL, McDevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25:43–51

    Article  PubMed  CAS  Google Scholar 

  65. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    Article  PubMed  CAS  Google Scholar 

  66. Li S, Yu W, Hu GF (2011) Angiogenin inhibits nuclear translocation of apoptosis inducing factor in a Bcl-2-dependent manner. J Cell Physiol 227(4):1639–1644

    Article  Google Scholar 

  67. Greenway MJ, Alexander MD, Ennis S, Traynor BJ, Corr B, Frost E, Green A, Hardiman O (2004) A novel candidate region for ALS on chromosome 14q11.2. Neurology 63:1936–1938

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health grant R01 NS 065237 (to GFH). GFH receives fund from NIH, ALS Therapy Alliance, and Harvard University Technology Development Accelerator Fund, Massachusetts Alzheimer Disease Research Center, and Tufts University CTSI program. RHB receives support from the National Institute for Neurological Disease and Stroke, the Angel Fund, the ALS Association, Project ALS, P2ALS. Pierre L. de Bourgknecht ALS Research Foundation, the Al-Athel ALS Foundation, and the ALS Therapy Alliance. We thank Robert Shapiro (Harvard Medical School) for helpful discussions on biochemical characterization of RNASE4, Helene F. Rosenberg (NIH/NIAID) for providing mouse Rnase4 expression plasmid, Jan Hofsteenge (Friedrich Miescher Institute, Switzerland) for providing pig RNASE4 expression plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-fu Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Sheng, J., Hu, J.K. et al. Ribonuclease 4 protects neuron degeneration by promoting angiogenesis, neurogenesis, and neuronal survival under stress. Angiogenesis 16, 387–404 (2013). https://doi.org/10.1007/s10456-012-9322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9322-9

Keywords

Navigation