Skip to main content

Advertisement

Log in

PPARα agonist Wy14643 suppresses cathepsin B in human endothelial cells via transcriptional, post-transcriptional and post-translational mechanisms

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Cathepsin B has been shown to be important in angiogenesis; therefore, understanding its regulation in endothelial cells should provide fundamental information that will aid in the development of new treatment options. Peroxisome proliferator-activated receptors (PPARs) have been shown to have anti-inflammatory, anti-angiogenic and anti-tumorigenic properties. We explored the influence of a PPARα agonist on cathepsin B expression in human endothelial cells. The PPARα agonist, Wy14643, was found to inhibit cathepsin B protein expression. Further studies demonstrated the Wy14643-dependent but PPARα-independent suppression of cathepsin B. This has been previously described for other PPAR agonists. Wy14643 suppressed the accumulation of cathepsin B mRNA, which was accompanied by the selective suppression of a 5′-alternative splice variant. Consistent with these results, luciferase promoter assays and electrophoretic mobility shift analysis demonstrated that the suppression was facilitated by reduced binding of the transcription factors USF1/2 to an E-box within the cathepsin B promoter. Additionally, Wy14643 treatment resulted in a reduction in cathepsin B half-life, suggesting a posttranslational regulatory mechanism. Overall, our results suggest that the PPARα-dependent anti-angiogenic action of Wy14643 seems to be mediated, in part, by Wy14643-dependent but PPARα-independent regulation of cathepsin B expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

DMSO:

Dimethylsulfoxide

EMSA:

Electromobility shift assay

HUVEC:

Human umbilical vein endothelial cell

IκBα:

Inhibitor of kappa Bα

LPS:

Lipopolysaccharide

NF-κB:

Nuclear factor-kappa B

RT-PCR:

Reverse transcription polymerase chain reaction

USF:

Upstream stimulatory factor

References

  1. Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759

    Article  PubMed  CAS  Google Scholar 

  2. Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49:497–505

    Article  PubMed  CAS  Google Scholar 

  3. Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 12:245–254

    Article  PubMed  CAS  Google Scholar 

  4. Michalik L, Desvergne B, Wahli W (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4:61–70

    Article  PubMed  CAS  Google Scholar 

  5. Gross B, Staels B (2007) PPAR agonists: multimodal drugs for the treatment of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 21:687–710

    Article  PubMed  CAS  Google Scholar 

  6. Reilly SM, Lee CH (2008) PPAR delta as a therapeutic target in metabolic disease. FEBS Lett 582:26–31

    Article  PubMed  CAS  Google Scholar 

  7. Gervois P, Fruchart JC, Staels B (2007) Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab 3:145–156

    Article  PubMed  CAS  Google Scholar 

  8. Friedmann PS, Cooper HL, Healy E (2005) Peroxisome proliferator-activated receptors and their relevance to dermatology. Acta Derm Venereol 85:194–202

    Article  PubMed  CAS  Google Scholar 

  9. Straus DS, Glass CK (2007) Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 28:551–558

    Article  PubMed  CAS  Google Scholar 

  10. Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121

    Article  PubMed  CAS  Google Scholar 

  11. Huang W, Andras IE, Rha GB, Hennig B, Toborek M (2011) PPARα and PPARγ protect against HIV-1-induced MMP-9 overexpression via caveolae-associated ERK and Akt signaling. FASEB J 25(11):3979–3988

    Article  PubMed  CAS  Google Scholar 

  12. Park BC, Thapa D, Lee JS, Park SY, Kim JA (2009) Troglitazone inhibits vascular endothelial growth factor-induced angiogenic signaling via suppression of reactive oxygen species production and extracellular signal-regulated kinase phosphorylation in endothelial cells. J Pharmacol Sci 111:1–12

    Article  PubMed  CAS  Google Scholar 

  13. Mahmood DF, Jguirim-Souissi I, Khadija E, Blondeau N, Diderot V, Amrani S, Slimane MN, Syrovets T, Simmet T, Rouis M (2011) Peroxisome proliferator-activated receptor gamma induces apoptosis and inhibits autophagy of human monocyte-derived macrophages via induction of cathepsin L: potential role in atherosclerosis. J Biol Chem 286:28858–28866

    Article  PubMed  CAS  Google Scholar 

  14. Nakken B, Varga T, Szatmari I, Szeles L, Gyongyosi A, Illarionov PA, Dezso B, Gogolak P, Rajnavolgyi E, Nagy L (2011) Peroxisome proliferator-activated receptor gamma-regulated cathepsin D is required for lipid antigen presentation by dendritic cells. J Immunol 187:240–247

    Article  PubMed  CAS  Google Scholar 

  15. Banfi C, Auwerx J, Poma F, Tremoli E, Mussoni L (2003) Induction of plasminogen activator inhibitor I by the PPARalpha ligand, Wy-14,643, is dependent on ERK1/2 signaling pathway. Thromb Haemost 90(4):611–619

    PubMed  CAS  Google Scholar 

  16. Liangpunsakul S, Wou SE, Wineinger KD, Zeng Y, Cyganek I, Jayaram HN, Crabb DW (2009) Effects of WY-14,643 on the phosphorylation and activation of AMP-dependent protein kinase. Arch Biochem Biophys 485(1):10–15

    Article  PubMed  CAS  Google Scholar 

  17. Conus S, Simon HU (2010) Cathepsins and their involvement in immune responses. Swiss Med Wkly 140:w13042

    PubMed  Google Scholar 

  18. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633

    Article  PubMed  CAS  Google Scholar 

  19. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, Von FK (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–13458

    Article  PubMed  CAS  Google Scholar 

  20. Shi GP, Villadangos JA, Dranoff G, Small C, Gu L, Haley KJ, Riese R, Ploegh HL, Chapman HA (1999) Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10:197–206

    Article  PubMed  CAS  Google Scholar 

  21. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    Article  PubMed  CAS  Google Scholar 

  22. Roth W, Deussing J, Botchkarev VA, Pauly-Evers M, Saftig P, Hafner A, Schmidt P, Schmahl W, Scherer J, Anton-Lamprecht I, Von FK, Paus R, Peters C (2000) Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J 14:2075–2086

    Article  PubMed  CAS  Google Scholar 

  23. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY, Greenbaum DC, Hager JH, Bogyo M, Hanahan D (2004) Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5:443–453

    Article  PubMed  CAS  Google Scholar 

  24. Wang B, Sun J, Kitamoto S, Yang M, Grubb A, Chapman HA, Kalluri R, Shi GP (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029

    Article  PubMed  CAS  Google Scholar 

  25. Zavasnik-Bergant T, Turk B (2007) Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells. Biol Chem 388:1141–1149

    Article  PubMed  CAS  Google Scholar 

  26. Conus S, Simon HU (2008) Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol 76:1374–1382

    Article  PubMed  CAS  Google Scholar 

  27. Cavallo-Medved D, Mai J, Dosescu J, Sameni M, Sloane BF (2005) Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 118:1493–1503

    Article  PubMed  CAS  Google Scholar 

  28. Jane DT, Morvay L, Dasilva L, Cavallo-Medved D, Sloane BF, Dufresne MJ (2006) Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH. Biol Chem 387:223–234

    Article  PubMed  CAS  Google Scholar 

  29. Werle B, Kraft C, Lah TT, Kos J, Schanzenbacher U, Kayser K, Ebert W, Spiess E (2000) Cathepsin B in infiltrated lymph nodes is of prognostic significance for patients with nonsmall cell lung carcinoma. Cancer 89:2282–2291

    Article  PubMed  CAS  Google Scholar 

  30. Iacobuzio-Donahue CA, Shuja S, Cai J, Peng P, Murnane MJ (1997) Elevations in cathepsin B protein content and enzyme activity occur independently of glycosylation during colorectal tumor progression. J Biol Chem 272:29190–29199

    Article  PubMed  CAS  Google Scholar 

  31. Sinha AA, Quast BJ, Wilson MJ, Reddy PK, Gleason DF, Sloane BF (1998) Codistribution of procathepsin B and mature cathepsin B forms in human prostate tumors detected by confocal and immunofluorescence microscopy. Anat Rec 252:281–289

    Article  PubMed  CAS  Google Scholar 

  32. Foekens JA, Kos J, Peters HA, Krasovec M, Look MP, Cimerman N, Meijer-van Gelder ME, Henzen-Logmans SC, van Putten WL, Klijn JG (1998) Prognostic significance of cathepsins B and L in primary human breast cancer. J Clin Oncol 16:1013–1021

    PubMed  CAS  Google Scholar 

  33. Krueger S, Haeckel C, Buehling F, Roessner A (1999) Inhibitory effects of antisense cathepsin B cDNA transfection on invasion and motility in a human osteosarcoma cell line. Cancer Res 59:6010–6014

    PubMed  CAS  Google Scholar 

  34. Mohanam S, Jasti SL, Kondraganti SR, Chandrasekar N, Lakka SS, Kin Y, Fuller GN, Yung AW, Kyritsis AP, Dinh DH, Olivero WC, Gujrati M, Ali-Osman F, Rao JS (2001) Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20:3665–3673

    Article  PubMed  CAS  Google Scholar 

  35. Yanamandra N, Gumidyala KV, Waldron KG, Gujrati M, Olivero WC, Dinh DH, Rao JS, Mohanam S (2004) Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis. Oncogene 23:2224–2230

    Article  PubMed  CAS  Google Scholar 

  36. Strojnik T, Kos J, Zidanik B, Golouh R, Lah T (1999) Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin Cancer Res 5:559–567

    PubMed  CAS  Google Scholar 

  37. Premzl A, Turk V, Kos J (2006) Intracellular proteolytic activity of cathepsin B is associated with capillary-like tube formation by endothelial cells in vitro. J Cell Biochem 97:1230–1240

    Article  PubMed  CAS  Google Scholar 

  38. Hashimoto Y, Kakegawa H, Narita Y, Hachiya Y, Hayakawa T, Kos J, Turk V, Katunuma N (2001) Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochem Biophys Res Commun 283:334–339

    Article  PubMed  CAS  Google Scholar 

  39. Baici A, Horler D, Lang A, Merlin C, Kissling R (1995) Cathepsin B in osteoarthritis: zonal variation of enzyme activity in human femoral head cartilage. Ann Rheum Dis 54:281–288

    Article  PubMed  CAS  Google Scholar 

  40. Cataldo AM, Nixon RA (1990) Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci USA 87:3861–3865

    Article  PubMed  CAS  Google Scholar 

  41. Bever CT Jr, Garver DW (1995) Increased cathepsin B activity in multiple sclerosis brain. J Neurol Sci 131:71–73

    Article  PubMed  Google Scholar 

  42. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    Article  PubMed  CAS  Google Scholar 

  43. Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64

    Article  PubMed  CAS  Google Scholar 

  44. Meissner M, Pinter A, Michailidou D, Hrgovic I, Kaprolat N, Stein M, Holtmeier W, Kaufmann R, Gille J (2008) Microtubule-targeted drugs inhibit VEGF receptor-2 expression by both transcriptional and post-transcriptional mechanisms. J Invest Dermatol 128:2084–2091

    Article  PubMed  CAS  Google Scholar 

  45. Meissner M, Reichert TE, Kunkel M, Gooding W, Whiteside TL, Ferrone S, Seliger B (2005) Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 11:2552–2560

    Article  PubMed  CAS  Google Scholar 

  46. Berardi S, Lang A, Kostoulas G, Horler D, Vilei EM, Baici A (2001) Alternative messenger RNA splicing and enzyme forms of cathepsin B in human osteoarthritic cartilage and cultured chondrocytes. Arthritis Rheum 44:1819–1831

    Article  PubMed  CAS  Google Scholar 

  47. Yan S, Berquin IM, Troen BR, Sloane BF (2000) Transcription of human cathepsin B is mediated by Sp1 and Ets family factors in glioma. DNA Cell Biol 19(2):79–91

    Article  PubMed  CAS  Google Scholar 

  48. Urbich C, Stein M, Reisinger K, Kaufmann R, Dimmeler S, Gille J (2003) Fluid shear stress-induced transcriptional activation of the vascular endothelial growth factor receptor-2 gene requires Sp1-dependent DNA binding. FEBS Lett 535:87–93

    Article  PubMed  CAS  Google Scholar 

  49. Meissner M, Michailidou D, Stein M, Hrgovic I, Kaufmann R, Gille J (2009) Inhibition of Rac1 GTPase downregulates vascular endothelial growth factor receptor-2 expression by suppressing Sp1-dependent DNA binding in human endothelial cells. Exp Dermatol 18:863–869

    Article  PubMed  CAS  Google Scholar 

  50. Yan S, Jane DT, Dufresne MJ, Sloane BF (2003) Transcription of cathepsin B in glioma cells: regulation by an E-box adjacent to the transcription initiation site. Biol Chem 384:1421–1427

    PubMed  CAS  Google Scholar 

  51. Ren S, Xin C, Beck KF et al (2005) PPARalpha activation upregulates nephrin expression in human embryonic kidney epithelial cells and podocytes by a dual mechanism. Biochem Biophys Res Commun 338(4):1818–1824

    Article  PubMed  CAS  Google Scholar 

  52. Jana M, Jana A, Liu X et al (2007) Involvement of phosphatidylinositol 3-kinase-mediated up-regulation of I kappa B alpha in anti-inflammatory effect of gemfibrozil in microglia. J Immunol 179(6):4142–4152

    PubMed  CAS  Google Scholar 

  53. Cabezas F, Lagos J, Céspedes C et al (2011) Megalin/LRP2 expression is induced by peroxisome proliferator-activated receptor -alpha and -gamma: implications for PPARs’ roles in renal function. PLoS ONE 6(2):e16794

    Article  PubMed  CAS  Google Scholar 

  54. Premzl A, Zavasnik-Bergant V, Turk V, Kos J (2003) Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp Cell Res 283:206–214

    Article  PubMed  CAS  Google Scholar 

  55. Kim S, Huang W, Mottillo EP, Sohail A, Ham YA, Conley-Lacomb MK, Kim CJ, Tzivion G, Kim HR, Wang S, Chen YQ, Fridman R (2010) Posttranslational regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in mouse PTEN null prostate cancer cells: enhanced surface expression and differential O-glycosylation of MT1-MMP. Biochim Biophys Acta 1803:1287–1297

    Article  PubMed  CAS  Google Scholar 

  56. Baici A, Muntener K, Willimann A, Zwicky R (2006) Regulation of human cathepsin B by alternative mRNA splicing: homeostasis, fatal errors and cell death. Biol Chem 387:1017–1021

    Article  PubMed  CAS  Google Scholar 

  57. Meissner M, Stein M, Urbich C, Reisinger K, Suske G, Staels B, Kaufmann R, Gille J (2004) PPARalpha activators inhibit vascular endothelial growth factor receptor-2 expression by repressing Sp1-dependent DNA binding and transactivation. Circ Res 94:324–332

    Article  PubMed  CAS  Google Scholar 

  58. Marx N, Kehrle B, Kohlhammer K, Grub M, Koenig W, Hombach V, Libby P, Plutzky J (2002) PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 90:703–710

    Article  PubMed  CAS  Google Scholar 

  59. Sawai H, Liu J, Reber HA, Hines OJ, Eibl G (2006) Activation of peroxisome proliferator-activated receptor-gamma decreases pancreatic cancer cell invasion through modulation of the plasminogen activator system. Mol Cancer Res 4:159–167

    Article  PubMed  CAS  Google Scholar 

  60. Bility MT, Devlin-Durante MK, Blazanin N, Glick AB, Ward JM, Kang BH, Kennett MJ, Gonzalez FJ, Peters JM (2008) Ligand activation of peroxisome proliferator-activated receptor beta/delta (PPAR beta/delta) inhibits chemically induced skin tumorigenesis. Carcinogenesis 29:2406–2414

    Article  PubMed  CAS  Google Scholar 

  61. Bility MT, Zhu B, Kang BH, Gonzalez FJ, Peters JM (2010) Ligand activation of peroxisome proliferator-activated receptor-beta/delta and inhibition of cyclooxygenase-2 enhances inhibition of skin tumorigenesis. Toxicol Sci 113:27–36

    Article  PubMed  CAS  Google Scholar 

  62. Cavallo-Medved D, Rudy D, Blum G, Bogyo M, Caglic D, Sloane BF (2009) Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp Cell Res 315:1234–1246

    Article  PubMed  CAS  Google Scholar 

  63. Araki H, Tamada Y, Imoto S, Dunmore B, Sanders D, Humphrey S, Nagasaki M, Doi A, Nakanishi Y, Yasuda K, Tomiyasu Y, Tashiro K, Print C, Charnock-Jones DS, Kuhara S, Miyano S (2009) Analysis of PPARalpha-dependent and PPARalpha-independent transcript regulation following fenofibrate treatment of human endothelial cells. Angiogenesis 12:221–229

    Article  PubMed  CAS  Google Scholar 

  64. Palakurthi SS, Aktas H, Grubissich LM, Mortensen RM, Halperin JA (2001) Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor gamma and mediated by inhibition of translation initiation. Cancer Res 61:6213–6218

    PubMed  CAS  Google Scholar 

  65. Yamashita M (2008) PPARalpha/gamma-independent effects of PPARalpha/gamma ligands on cysteinyl leukotriene production in mast cells. PPAR Res 2008:293538

    Article  PubMed  Google Scholar 

  66. Kim J, Ahn JH, Kim JH, Yu YS, Kim HS, Ha J, Shinn SH, Oh YS (2007) Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Exp Eye Res 84:886–893

    Article  PubMed  CAS  Google Scholar 

  67. Guo D, Sarkar J, Suino-Powell K, Xu Y, Matsumoto K, Jia Y, Yu S, Khare S, Haldar K, Rao MS, Foreman JE, Monga SP, Peters JM, Xu HE, Reddy JK (2007) Induction of nuclear translocation of constitutive androstane receptor by peroxisome proliferator-activated receptor alpha synthetic ligands in mouse liver. J Biol Chem 282(50):36766–36776

    Article  PubMed  CAS  Google Scholar 

  68. Kim DJ, Murray IA, Burns AM, Gonzalez FJ, Perdew GH, Peters JM (2005) Peroxisome proliferator-activated receptor-beta/delta inhibits epidermal cell proliferation by down-regulation of kinase activity. J Biol Chem 280:9519–9527

    Article  PubMed  CAS  Google Scholar 

  69. Pozzi A, Ibanez MR, Gatica AE, Yang S, Wei S, Mei S, Falck JR, Capdevila JH (2007) Peroxisomal proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis. J Biol Chem 282:17685–17695

    Article  PubMed  CAS  Google Scholar 

  70. Madej A, Okopien B, Kowalski J, Zielinski M, Wysocki J, Szygula B, Kalina Z, Herman ZS (2007) Effects of fenofibrate on plasma cytokine concentrations in patients with atherosclerosis and hyperlipoproteinemia IIb. Int J Clin Pharmacol Ther 36(6):345–349

    Google Scholar 

  71. Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, Najib J, Maclouf J, Tedgui A (1998) Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 393(6687):790–793

    Article  PubMed  CAS  Google Scholar 

  72. Goya K, Sumitani S, Xu X, Kitamura T, Yamamoto H, Kurebayashi S, Saito H, Kouhara H, Kasayama S, Kawase I (2004) Peroxisome proliferator-activated receptor alpha agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 24(4):658–663

    Article  PubMed  CAS  Google Scholar 

  73. Thuillier P, Anchiraico GJ, Nickel KP, Maldve RE, Gimenez-Conti I, Muga SJ, Liu KL, Fischer SM, Belury MA (2000) Activators of peroxisome proliferator-activated receptor-alpha partially inhibit mouse skin tumor promotion. Mol Carcinog 29(3):134–142

    Article  PubMed  CAS  Google Scholar 

  74. Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnés CM, Fannon M, Laforme AM, Chaponis DM, Folkman J, Kieran MW (2008) PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci USA 105(3):985–990

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Wilhelm Sander Foundation (MM) and the Berlin Foundation for Dermatology (MM) and by a grant from the University of Frankfurt (GR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Meissner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichenbach, G., Starzinski-Powitz, A., Sloane, B.F. et al. PPARα agonist Wy14643 suppresses cathepsin B in human endothelial cells via transcriptional, post-transcriptional and post-translational mechanisms. Angiogenesis 16, 223–233 (2013). https://doi.org/10.1007/s10456-012-9314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9314-9

Keywords

Navigation