Skip to main content

Advertisement

Log in

Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Lymphedema is mainly caused by lymphatic obstruction and manifested as tissue swelling, often in the arms and legs. Lymphedema is one of the most common post-surgical complications in breast cancer patients and presents a painful and disfiguring chronic illness that has few treatment options. Here, we evaluated the therapeutic potential of interleukin (IL)-8 in lymphatic regeneration independent of its pro-inflammatory activity. We found that IL-8 promoted proliferation, tube formation, and migration of lymphatic endothelial cells (LECs) without activating the VEGF signaling. Additionally, IL-8 suppressed the major cell cycle inhibitor CDKN1C/p57KIP2 by downregulating its positive regulator PROX1, which is known as the master regulator of LEC-differentiation. Animal-based studies such as matrigel plug and cornea micropocket assays demonstrated potent efficacy of IL-8 in activating lymphangiogenesis in vivo. Moreover, we have generated a novel transgenic mouse model (K14-hIL8) that expresses human IL-8 in the skin and then crossed with lymphatic-specific fluorescent (Prox1-GFP) mouse. The resulting double transgenic mice showed that a stable expression of IL-8 could promote embryonic lymphangiogenesis. Moreover, an immunodeficient IL-8-expressing mouse line that was established by crossing K14-hIL8 mice with athymic nude mice displayed an enhanced tumor-associated lymphangiogenesis. Finally, when experimental lymphedema was introduced, K14-hIL8 mice showed an improved amelioration of lymphedema with an increased lymphatic regeneration. Together, we report that IL-8 can activate lymphangiogenesis in vitro and in vivo with a therapeutic efficacy in post-surgical lymphedema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483

    Article  PubMed  CAS  Google Scholar 

  2. Norrmen C et al (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123(12):1335–1351

    Article  PubMed  Google Scholar 

  3. Schmitz KH et al (2012) Prevalence of breast cancer treatment sequelae over 6 years of follow-up: the pulling through study. Cancer 118(8 Suppl):2217–2225

    Article  PubMed  Google Scholar 

  4. Shimoda H, Bernas MJ, Witte MH (2011) Dysmorphogenesis of lymph nodes in Foxc2 haploinsufficient mice. Histochem Cell Biol 135(6):603–613

    Article  PubMed  CAS  Google Scholar 

  5. Shah C, Vicini FA (2011) Breast cancer-related arm lymphedema: incidence rates, diagnostic techniques, optimal management and risk reduction strategies. Int J Radiat Oncol Biol Phys 81(4):907–914

    Article  PubMed  Google Scholar 

  6. Warren AG et al (2007) Lymphedema: a comprehensive review. Ann Plast Surg 59(4):464–472

    Article  PubMed  CAS  Google Scholar 

  7. Petrek JA et al (2001) Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer 92(6):1368–1377

    Article  PubMed  CAS  Google Scholar 

  8. Hardin R, Jacobs LK (2012) Lymphedema: still a problem without an answer. Oncology (Williston Park) 26(3):256–257

    Google Scholar 

  9. McLaughlin SA (2012) Lymphedema: separating fact from fiction. Oncology (Williston Park) 26(3):242–249

    Google Scholar 

  10. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  PubMed  CAS  Google Scholar 

  11. Oh SJ et al (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188(1):96–109

    Article  PubMed  CAS  Google Scholar 

  12. Hong YK et al (2004) VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 18(10):1111–1113

    PubMed  CAS  Google Scholar 

  13. Nagy JA et al (2002) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196(11):1497–1506

    Article  PubMed  CAS  Google Scholar 

  14. Nagy JA et al (2002) VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 67:227–237

    Article  PubMed  CAS  Google Scholar 

  15. Nakao S et al (2010) Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. FASEB J 24(2):504–513

    Article  PubMed  CAS  Google Scholar 

  16. Shin JW et al (2006) Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 17(2):576–584

    Article  PubMed  CAS  Google Scholar 

  17. Cao R et al (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6(4):333–345

    Article  PubMed  CAS  Google Scholar 

  18. Kajiya K et al (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24(16):2885–2895

    Article  PubMed  CAS  Google Scholar 

  19. Banziger-Tobler NE et al (2008) Growth hormone promotes lymphangiogenesis. Am J Pathol 173(2):586–597

    Google Scholar 

  20. Bjorndahl M et al (2005) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 102(43):15593–15598

    Article  PubMed  Google Scholar 

  21. Koch AE et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801

    Article  PubMed  CAS  Google Scholar 

  22. Strieter RM et al (1992) Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 141(6):1279–1284

    PubMed  CAS  Google Scholar 

  23. Simonini A et al (2000) IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 101(13):1519–1526

    Article  PubMed  CAS  Google Scholar 

  24. Martin D, Galisteo R, Gutkind JS (2009) CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem 284(10):6038–6042

    Article  PubMed  CAS  Google Scholar 

  25. Murdoch C, Monk PN, Finn A (1999) Cxc chemokine receptor expression on human endothelial cells. Cytokine 11(9):704–712

    Article  PubMed  CAS  Google Scholar 

  26. Li A et al (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6):3369–3376

    PubMed  CAS  Google Scholar 

  27. Choi I et al (2012) 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: therapeutic implications of 9-cis retinoic Acid for secondary lymphedema. Circulation 125(7):872–882

    Article  PubMed  CAS  Google Scholar 

  28. White JR et al (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273(17):10095–10098

    Article  PubMed  CAS  Google Scholar 

  29. Kubo K et al (2005) Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N’-{4-(4-quinolyloxy)phenyl}ureas. J Med Chem 48(5):1359–1366

    Article  PubMed  CAS  Google Scholar 

  30. Kirkin V et al (2004) MAZ51, an indolinone that inhibits endothelial cell and tumor cell growth in vitro, suppresses tumor growth in vivo. Int J Cancer 112(6):986–993

    Article  PubMed  CAS  Google Scholar 

  31. Baxter SA et al (2011) Regulation of the lymphatic endothelial cell cycle by the PROX1 homeodomain protein. Biochim Biophys Acta 1813(1):201–212

    Article  PubMed  CAS  Google Scholar 

  32. Lee S et al (2009) Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113(8):1856–1859

    Article  PubMed  CAS  Google Scholar 

  33. Choi I et al (2011) Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood 117(1):362–365

    Article  PubMed  CAS  Google Scholar 

  34. Wang X et al (1997) Transgenic studies with a keratin promoter-driven growth hormone transgene: prospects for gene therapy. Proc Natl Acad Sci U S A 94(1):219–226

    Article  PubMed  CAS  Google Scholar 

  35. Barlic J, Murphy PM (2007) Chemokine regulation of atherosclerosis. J Leukoc Biol 82(2):226–236

    Article  PubMed  CAS  Google Scholar 

  36. Bozic CR et al (1994) The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J Biol Chem 269(47):29355–29358

    PubMed  CAS  Google Scholar 

  37. Starckx S et al (2002) Recombinant mouse granulocyte chemotactic protein-2: production in bacteria, characterization, and systemic effects on leukocytes. J Interferon Cytokine Res 22(9):965–974

    Article  PubMed  CAS  Google Scholar 

  38. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741

    Article  PubMed  CAS  Google Scholar 

  39. Kunstfeld R et al (2004) Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 104(4):1048–1057

    Article  PubMed  CAS  Google Scholar 

  40. Rutkowski JM et al (2006) Secondary lymphedema in the mouse tail: lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc Res 72(3):161–171

    Article  PubMed  CAS  Google Scholar 

  41. Petrova TV et al (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21(17):4593–4599

    Article  PubMed  CAS  Google Scholar 

  42. Hirakawa S et al (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162(2):575–586

    Article  PubMed  CAS  Google Scholar 

  43. Hong YK et al (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225(3):351–357

    Article  PubMed  CAS  Google Scholar 

  44. Mu H et al (2012) Lysophosphatidic Acid induces lymphangiogenesis and IL-8 production in vitro in human lymphatic endothelial cells. Am J Pathol 180(5):2170–2181

    Article  PubMed  CAS  Google Scholar 

  45. Wigle JT et al (1999) Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 21(3):318–322

    Article  PubMed  CAS  Google Scholar 

  46. Dyer MA (2003) Regulation of proliferation, cell fate specification and differentiation by the homeodomain proteins Prox1, Six3, and Chx10 in the developing retina. Cell Cycle 2(4):350–357

    Article  PubMed  CAS  Google Scholar 

  47. Dyer MA et al (2003) Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet 34(1):53–58

    Article  PubMed  CAS  Google Scholar 

  48. Pan MR et al (2009) Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. J Cell Sci 122(Pt 18):3358–3364

    Article  PubMed  CAS  Google Scholar 

  49. Kang J et al (2010) An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 116(1):140–150

    Google Scholar 

  50. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185

    Article  PubMed  CAS  Google Scholar 

  51. Zhang H et al (2011) Spontaneous lymphatic vessel formation and regression in the murine cornea. Invest Ophthalmol Vis Sci 52(1):334–338

    Article  PubMed  Google Scholar 

  52. Bos FL et al (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109(5):486–491

    Article  PubMed  CAS  Google Scholar 

  53. Cao R et al (2011) Mouse corneal lymphangiogenesis model. Nat Protoc 6(6):817–826

    Article  PubMed  CAS  Google Scholar 

  54. Caunt M et al (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13(4):331–342

    Article  PubMed  CAS  Google Scholar 

  55. Kubo H et al (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99(13):8868–8873

    Article  PubMed  CAS  Google Scholar 

  56. Ecoiffier T, Yuen D, Chen L (2010) Differential distribution of blood and lymphatic vessels in the murine cornea. Invest Ophthalmol Vis Sci 51(5):2436–2440

    Article  PubMed  Google Scholar 

  57. Vassar R, Rosenberg M, Ross S, Tyner A, Fuchs E (1989) Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci USA 86(5):1563–1567

    Google Scholar 

Download references

Acknowledgments

This study was supported by NIH/NICHD (YKH), American Cancer Society (YKH), American Heart Association (YKH), March of Dimes Foundation (YKH), Daniel Butler Memorial Fund (HJL), Teri Lanni Research Fund (HJL), and NIH/NEI (LC).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kwon Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, I., Lee, Y.S., Chung, H.K. et al. Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration. Angiogenesis 16, 29–44 (2013). https://doi.org/10.1007/s10456-012-9297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9297-6

Keywords

Navigation