Skip to main content
Log in

On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of \(\mathrm{Sp}{(n+1,1)}\)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Conformal qc geometry of spherical qc manifolds is investigated. We construct the qc Yamabe operators on qc manifolds, which are covariant under the conformal qc transformations. A qc manifold is scalar positive, negative or vanishing if and only if its qc Yamabe invariant is positive, negative or zero, respectively. On a scalar positive spherical qc manifold, we can construct the Green function of the qc Yamabe operator, which can be applied to construct a conformally invariant tensor. It becomes a spherical qc metric if the qc positive mass conjecture is true. Conformal qc geometry of spherical qc manifolds can be applied to study convex cocompact subgroups of \(\mathrm{Sp}(n+1,1).\) On a spherical qc manifold constructed from such a discrete subgroup, we construct a spherical qc metric of Nayatani type. As a corollary, we prove that such a spherical qc manifold is scalar positive, negative or vanishing if and only if the Poincaré critical exponent of the discrete subgroup is less than, greater than or equal to \(2n+2\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, J.: Weyl connections and the local sphere theorem for quaternionic contact structures. Ann. Global Anal. Geom. 39, 165–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apanasov, B., Kim, I.: Cartan angular invariant and deformations of rank \(1\) symmetric spaces. Sb. Math. 198(2), 147–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque 265, vi+109 (2000)

  4. Cheng, J., Chiu, H., Yang, P.: Uniformization of spherical CR manifolds. Adv. Math. 255, 182–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conti, D., Fernández, M., Santisteban, J., José, A.: On seven-dimensional quaternionic contact solvable Lie groups. Forum Math. 26, 547–576 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corlette, K.: Hausdorff dimension of limit sets I. Invent. Math. 102, 521–541 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duchemin, D.: Quaternionic contact structures in dimension 7. Ann. Inst. Fourier. Grenoble 56, 851–885 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Andrés, L., Fernández, M., Ivanov, S., Santisteban, J., Ugarte, L., Vassilev, D.: Quaternionic K\(\ddot{a}\)hler and \(Spin(7)\) metrics arising from quaternionic contact Einstein structures. Ann. Mat. Pura Appl. 193, 261–290 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eberlein, P.O.: Visibility Manifold. Pac. J. Math. 46, 45–109 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Epstein, C., Melrose, R., Mendoza, G.: Resolvent of the Laplacian on strictly pseudoconvex domains. Acta. Math. 167, 1–106 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Habermann, L., Jost, J.: Green functions and conformal geometry. J. Differ. Geom. 53, 405–442 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Habermann, L.: Riemannian Metrics of Constant Mass and Moduli Spaces of Conformal Structures. Lecture Notes in Mathematics, vol. 1743. Springer, Berlin (2000)

  13. Ivanov, S., Vassilev, D.: Conformal quaternionic contact curvature and the local sphere theorem. J. Math. Pures Appl. 93, 277–307 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ivanov, S., Vassilev, D.: Quaternionic contact manifolds with a closed fundamental 4-form. Bull. London Math. Soc. 42, 1021–1030 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ivanov, S., Vassilev, D.: Extremals for the Sobolev Inequality and the quacternionic contact Yamabe Problem. London, World Scientific, New Jersey (2011)

    Book  MATH  Google Scholar 

  16. Ivanov, S. Minchev. I. and Vassilev, D., Quaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem, vol. 231, no. 1086, pp. vi+82. Memoirs of the American Mathematical Society (2014)

  17. Ivanov, S., Vassilev, D.: The Lichnerrowicz and Obata first eigenvalue theorems and the Obata uniqueness result in the Yamabe problem on CR and quaternionic contact manifolds. Nonlinear Analysis. 126, 262–323 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ivanov, S. Minchev. I. and Vassilev. D.: Solution of the qc Yamabe equation on a 3-Sasakin manifold and the quaternionic Heisenberg group, arXiv:1504.03142v1

  19. Izeki, H.: Limits sets of Kleinian groups and conformally flat Riemannian manifolds. Invent. Math. 122, 603–625 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Izeki, H.: The Teichm\(\ddot{u}\)ller distance on the space of flat conformal structures. Conform Geom Dyn. 2, 1–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. soc. 258, 147–153 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kobayashi, O.: Scalar curvature of a metric with unit volume. Math. Ann. 279, 253–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leutwiler, H.: A riemannian metric invariant under Möbius transformations in \(\mathbb{R}^\text{ n }\). In: Complex Analysis Joensuu 1987. Lecture Notes in Mathematics, vol. 1351, pp. 223–235. Springer, Berlin (1988)

  24. Li, Z.: Uniformization of spherical CR manifolds and the CR Yamabe problem, Proc. Symp. Pure Math. 54, Part 1 (1993), 299-305

  25. Nayatani, S.: Patterson-Sullivan measure and conformally flat metrics. Math. Z. 225, 115–131 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nayatani, S.: Discrete groups of complex hyperbolic isometries and pseudo-Hermitian structures. In: Analysis and Geometry in Several Complex Variables, pp. 209–237. Birkhäuser, Boston (1997)

  27. Orsted, B.: Conformally invariant differential equations and projective geometry. J. Funct. Anal. 44, 1–23 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Patterson, S.J.: The limit set of a Fuchsian group. Acta. Math. 136, 241–273 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Salamon, S.: Riemannian Geometry and Holonomy Groups. Pitman Research Notes in Mathematics 201. Longman, Harlow (1989)

    Google Scholar 

  30. Schoen, R., Yau, S.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47–71 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, W.: Canonical contact forms on spherical CR manifolds. J. Eur. Math. soc. 5, 245–273 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, W.: Representations of \({\rm SU}(p, q)\) and CR geometry I. J. Math. Kyoto Univ. 45, 759–780 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Wang, W.: The Teichmüller distance on the space of spherical CR structures. Sci. China Ser. A. 49, 1523–1538 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, W.: The Yamabe problem on quaternionic contact manifolds. Ann. Mat. Pura Appl. 186, 359–380 (2007)

  35. Wang, W.: On the tangential Cauchy-Fueter operators on nondegenerate quadratic hypersurfaces in \(\mathbb{H}^{2}\). Math. Nachr. 286, 1353–1376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yue, C.: Mostow rigidity of rank 1 discrete groups with ergodic Bowen-Margulis measure. Invent. Math. 125, 75–102 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Supported by National Nature Science Foundation in China (No. 11171298; No. 11571305).

Appendix: The Green function of the qc Yamabe operator on the quaternionic Heisenberg group

Appendix: The Green function of the qc Yamabe operator on the quaternionic Heisenberg group

See also §2.4 in [15] for a similar calculation for regular solutions of the qc Yamabe equation.

Proof of Proposition 3.4. Without loss of generality, we assume \(\xi =0.\) Denote \(\eta =(y,t).\) Recall that \(\Delta _{0}=-\frac{1}{2}\sum _{j=1}^{4n}Y_{j}Y_{j}.\) We have

$$\begin{aligned} Y_{4l+j}\left( \frac{1}{(\Vert \eta \Vert ^{4}+\epsilon ^{2})^{\frac{Q-2}{4}}}\right)&= -\frac{Q-2}{4}\frac{Y_{4l+j}\Vert \eta \Vert ^{4}}{(\Vert \eta \Vert ^{4}+\epsilon ^{2})^{\frac{Q+2}{4}}}, \end{aligned}$$
(6.8)

with

$$\begin{aligned} Y_{4l+j}\Vert \eta \Vert ^{4}=4|y|^{2}y_{4l+j}+4\sum _{s=1}^{3}\sum _{k=1}^{4} b_{kj}^{s}y_{4l+k}t_{s}, \end{aligned}$$
(6.9)

using the expression of the vector field \(Y_{4l+j}\) in (2.17). Note that \(\frac{1}{\sqrt{2}}Y_{j}\) is an orthonormal basis. Then, we get

$$\begin{aligned} \Delta _{0}\left( \frac{1}{(\Vert \eta \Vert ^{4}+\epsilon ^{2})^{\frac{Q-2}{4}}}\right) =-\frac{Q-2}{4}\left[ \frac{\Delta _{0}\Vert \eta \Vert ^{4}}{(\Vert \eta \Vert ^{4}+\epsilon ^{2})^{\frac{Q+2}{4}}} +\frac{(Q+2)}{4}\frac{\left| \nabla _{0}\Vert \eta \Vert ^{4}\right| ^{2}}{(\Vert \eta \Vert ^{4}+\epsilon ^{2})^{\frac{Q+6}{4}}}\right] , \end{aligned}$$
(6.10)

where

$$\begin{aligned} 2\left| \nabla _{0}\Vert \eta \Vert ^{4}\right| ^{2}&=\sum _{l=0}^{n-1}\sum _{j=1}^{4} \left( Y_{4l+j}\Vert \eta \Vert ^{4}\right) ^{2}\nonumber \\&=16\sum _{l=0}^{n-1}\sum _{j=1}^{4}\left( |y|^{4}y_{4l+j}^{2} +\sum _{s,s'=1}^{3}\sum _{k,k'=1}^{4}b_{k'j}^{s'} b_{kj}^{s}y_{4l+k'}y_{4l+k}t_{s}t_{s'}\right) =16\Vert \eta \Vert ^{4}|y|^{2}, \end{aligned}$$
(6.11)

using (6.9) and \(\sum _{j=1}^{4}b_{kj}^{s}b_{jk'}^{s'}=(b^{s}b^{s'})_{kk'},\) antisymmetry for \(b^{s}b^{s'}\) of \(s\ne s'\) and \(\left( b^{s}\right) ^{2}=-\mathrm{id}.\) Similarly, by (6.9), we get

$$\begin{aligned} \Delta _{0}\Vert \eta \Vert ^{4}=-\frac{1}{2} \sum _{l=0}^{n-1}\sum _{j=1}^{4}\left( {8y_{4l+j}^{2}+4|y|^{2}+8\sum _{s=1}^{3} \sum _{k,k'=1}^{4}b_{k'j}^{s} b_{kj}^{s}y_{4l+k'}y_{4l+k}}\right) =-2(Q+2)|y|^{2}. \end{aligned}$$
(6.12)

Then apply (6.11) and (6.12) to (6.10) to get

$$\begin{aligned} \Delta _{0}\left( \frac{1}{(\Vert \eta \Vert ^{4}+\epsilon ^{2})^{\frac{Q-2}{4}}}\right) =\frac{(Q-2)(Q+2)|y|^{2}\epsilon ^{2}}{2(\Vert \eta \Vert ^{4}+\epsilon ^{2})^{\frac{Q+6}{4}}}. \end{aligned}$$
(6.13)

Now letting \(\epsilon \rightarrow 0\), we see that for any \(u\in C^{\infty }_{0}(\mathscr {H})\),

$$\begin{aligned} \int _{R^{4n+3}} L_{0}u\cdot \frac{C_{Q}}{(|y|^{4}+|{t}|^{2})^{\frac{Q-2}{4}}} =&\lim _{\epsilon \rightarrow 0}\int _{R^{4n+3}} L_{0}u\cdot \frac{C_{Q}}{(|y|^{4}+|{t}|^{2}+\epsilon ^{2})^{\frac{Q-2}{4}}}\\ =&\lim _{\epsilon \rightarrow 0}\int _{R^{4n+3}} u\cdot C_{Q}b_{n} \Delta _{0}\left( \frac{1}{(|y|^{4}+|{t}|^{2}+\epsilon ^{2} )^{\frac{Q-2}{4}}}\right) =u(0) \end{aligned}$$

by (6.13) and the formula (3.2) for \( C_{Q}^{-1}.\) The proposition is proved.                          \(\square \)

For \(g|_{\xi }=\frac{g_{0}|_{\xi }}{\Vert \xi \Vert ^{2}},\) we can write \(g=\phi ^{\frac{4}{Q-2}}g_{0}\) with \(\phi ={\Vert \xi \Vert ^{-\frac{Q-2}{2}}}.\) It follows from the transformation law of the scalar curvature (3.6) that

$$\begin{aligned} s_{g,\mathbb {Q}}&=\phi ^{-\frac{Q+2}{Q-2}}b_{n}\Delta _{0}\phi =\Vert \xi \Vert ^{\frac{Q+2}{2}}b_{n}\Delta _{0} \Vert \xi \Vert ^{-\frac{Q-2}{2}}\nonumber \\&=-\frac{Q-2}{8}b_{n}\Vert \xi \Vert ^{\frac{Q+2}{2}}\left( \frac{Q+6}{8} \Vert \xi \Vert ^{-\frac{Q+14}{2}}\left| \nabla _{0}\Vert \xi \Vert ^{4}\right| ^{2}+\Vert \xi \Vert ^{-\frac{Q+6}{2}} \Delta _{0}\Vert \xi \Vert ^{4}\right) \nonumber \\&=\frac{(Q-2)(Q+2)}{2}\frac{|y|^{2}}{\Vert \xi \Vert ^{2}} \end{aligned}$$
(6.14)

by (6.11) and (6.12), where \(\eta =(y,t)\). Similarly, we have

$$\begin{aligned} \left| \nabla _{g}\left( \ln \frac{1}{\Vert \xi \Vert }\right) \right| ^{2}=\Vert \xi \Vert ^{2} \left| \nabla _{0}\left( \ln \frac{1}{\Vert \xi \Vert }\right) \right| ^{2} =\frac{1}{16\Vert \xi \Vert ^{6}}\left| \nabla _{0}\Vert \xi \Vert ^{4}\right| ^{2}=\frac{1}{2} \frac{|y|^{2}}{||\xi ||^{2}}. \end{aligned}$$
(6.15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wang, W. On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of \(\mathrm{Sp}{(n+1,1)}\) . Ann Glob Anal Geom 49, 271–307 (2016). https://doi.org/10.1007/s10455-015-9492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-015-9492-y

Keywords

Navigation