Skip to main content
Log in

The topology of quaternionic contact manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We explore the consequences of curvature and torsion on the topology of quaternionic contact manifolds with integrable vertical distribution establishing a general Myers theorem for quaternionic contact manifolds of positive horizontal Ricci curvature. We introduce the category of almost Einstein quaternionic manifolds, characterized by the vanishing of one component of the torsion for the Biquard connection. Under the assumption of non-positive horizontal sectional curvatures, we show that the universal cover of any complete almost Einstein quaternionic contact manifold is either \(\mathbb {R}^{h+3}\) or \(\mathbb {R}^h \times \mathbb {S}^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aubin, T.: Métriques riemanniennes et courbure. J. Differ. Geom. 4, 383–424 (1970)

    MATH  MathSciNet  Google Scholar 

  2. Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque 265 (2000)

  3. Davidov, J., Ivanov, S., Minchev, I.: The twistor space of a quaternionic contact manifold. Q. J. Math 63(4), 873–890 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. de Andres, L., Fernandez, M., Ivanov, S., Ugarte, L., Vassilev, D.: Quaternionic Kaehler and Spin(7) metrics arising from quaternionic contact Einstein structures. Annali di matematica Pura ed Applicata (2012). doi:10.1007/s10231-012-0276-8

    Google Scholar 

  5. Duchemin, D.: Quaternionic contact structures in dimension 7. Ann. Inst. Fourier 56(3), 851–885 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom 17(2), 255–306 (1982)

    MATH  Google Scholar 

  7. Hebda, J.J.: Curvature and focal points in Riemannian foliations. Indiana Univ. Math. J. 35(2), 321–331 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hladky, R.K.: Connections and curvature in sub-Riemannian geometry. Houston J. Math. 38(4), 1107–1134 (2012)

    MATH  MathSciNet  Google Scholar 

  9. Hladky, R.K.: Bounds for the first eigenvalue of the horizontal Laplacian on postively curved sub-Riemannian manifolds. Geom. Dedicata 164, 155–177 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ivanov, S., Minchev, I, Vassilev, D.: Quaternionic contact Einstein manifolds. arXiv:1306.0474v1

  11. Ivanov, S., Minchev, I., Vassilev, D.: Extremals for the Sobolev inequality on the seven dimensional quaternionic Heisenberg group and the quaternionic contact Yamabe problem. J. Eur. Math. Soc. 12, 1041–1067 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ivanov, S., Minchev, I., Vassilev, D.: The optimal constant in the L2 Folland-Stein inequality on the quaternionic Heisenberg group. Ann. Sc. Norm. Super Pisa Cl. Sci X I(5), 635–652 (2012)

    MathSciNet  Google Scholar 

  13. Ivanov, S., Minchev, I., Vassilev. D.: Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem. Mem. Am. Math. Soc. 231(1086) (2014, to appear)

  14. Ivanov, S., Petkov, A., Vassilev, D.: The sharp lower bound of the first eigenvalue of the sub-Laplacian on a quaternionic contact manifold. J. Geom. Anal. 24(2), 756–778 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ivanov, S., Vassilev, D.: Conformal quaternionic contact curvature and the local sphere theorem. J. Math. Pure Appl. 93, 277–307 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Johnson, D.L., Whitt, L.B.: Totally geodesic foliations. J. Differ. Geom. 15(2), 225–235 (1980)

    MATH  MathSciNet  Google Scholar 

  17. O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–460 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  18. Reinhart, B.L.: Foliated manifolds with bundle-like metrics. Ann. Math. (2) 69(1), 119–132 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhu, S.-H.: On open three-manifolds of quasi-positive Ricci curvature. Proc. Am. Math. Soc. 120(2), 569–572 (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Hladky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hladky, R.K. The topology of quaternionic contact manifolds. Ann Glob Anal Geom 47, 99–115 (2015). https://doi.org/10.1007/s10455-014-9437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9437-x

Keywords

Mathematics Subject Classification

Navigation