Skip to main content
Log in

On the spectrum of the Page and the Chen–LeBrun–Weber metrics

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

An Erratum to this article was published on 12 February 2015

Abstract

We give bounds on the first non-zero eigenvalue of the scalar Laplacian for both the Page and the Chen–LeBrun–Weber Einstein metrics. One notable feature is that these bounds are obtained without explicit knowledge of the metrics or numerical approximation to them. Our method also allows the estimation of the invariant part of the spectrum for both metrics. We go on to discuss an application of these bounds to the linear stability of the metrics. We also give numerical evidence to suggest that the bounds for both metrics are extremely close to the actual eigenvalue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9(6), 641–651 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abreu, M., Freitas, P.: On the invariant spectrum of \(S^{1}\)-invariant metrics on \(\mathbb{S}^{2}\). Proc. Lond. Math. Soc. 84(1), 213–230 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Besse, A.: Einstein Manifolds. Classics in Mathematics. Springer (2008)

  4. Braun, V., Brelidze, T., Douglas, M.R., Ovrut, B.A.: Eigenvalues and eigenfunctions of the scalar Laplace operator on Calabi-Yau manifolds. J. High Energy Phys. Art No. 120, pp 1–57 (2008)

  5. Bunch, R.S., Donaldson, S.K.: Numerical approximations to extremal metrics on toric surfaces, Handbook of geometric analysis. Adv. Lect. Math. 7(1), 1–28 (2008)

    MathSciNet  Google Scholar 

  6. Calabi, E.: Extremal Kähler metrics II, Differential Geometry and Complex Analysis. Springer, Berlin (1985)

    Google Scholar 

  7. Cao, H.D., Hamilton, R., Ilmanen, T.: Gaussian density and stability for some Ricci solitons. arXiv:0404.165 (2004)

  8. Cao, H.D., Zhu, M.: On second variation of Perelman’s shrinker entropy. Math. Ann. 353(3), 747–763 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, X., LeBrun, C., Weber, B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21(4), 1137–1168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Derdzinski, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compos. Math. 49(3), 405–433 (1983)

    MATH  MathSciNet  Google Scholar 

  11. Donaldson, S.K.: Kähler geometry on toric manifolds and some other manifolds with large symmetry, handbook of geometric analysis. Adv. Lect. Math. 7(1), 29–75 (2008)

    MathSciNet  Google Scholar 

  12. Donaldson, S.K.: Some numerical results in complex differential geometry. Pure Appl. Math. Q. 5(2), 571–618 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Doran, C., Headrick, M., Herzog, C., Kantor, J., Wiseman, T.: Numerical Kähler–Einstein metric on the third del Pezzo. Commun. Math. Phys. 282(2), 357–393 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hall, S., Haslhofer, R., Siepmann, M.: The stability inequality for Ricci-flat cones. J. Geom. Anal. 24(1), 472–494 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. LeBrun, C.: Einstein metrics on complex surfaces. In: Pedersen, H., Andersen, J. Dupont, J., Swann A. (eds.) Geometry and Physics (Aarhus, 1995). Lecture Notes in Pure and Applied Mathematics, vol. 184, pp. 167–176. Dekker, New York (1997)

  16. Lichnerowicz, A.: Geometrie des groupes et de transformation, Dunod (1958)

  17. Matsushima, Y.: Remarks on Kähler–Einstein manifolds. Nagoya Math. J. 46, 161–173 (1972)

    MATH  MathSciNet  Google Scholar 

  18. Page, D.: A compact rotating gravitational instanton. Phys. Lett. 79B, 235–238 (1979)

    MathSciNet  Google Scholar 

  19. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. preprint (2002)

  20. Young, R.E.: Semiclassical instability of gravity with positive cosmological constant. Phys. Rev. D 28(10), 2436–2438 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

SH would like to thank his doctoral advisor Simon Donaldson for introducing him to many of the ideas we have used in this paper. We would like to thank Robert Haslhofer for his interest and comments on a previous version of this paper and the anonymous referees for numerous suggestions for improvements. We would also like to thank Steve Zelditch for his assistance. TM is supported by an A.R.C. grant. We acknowledge the support of a Dennison research grant from the University of Buckingham which funded a research visit by TM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart J. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, S.J., Murphy, T. On the spectrum of the Page and the Chen–LeBrun–Weber metrics. Ann Glob Anal Geom 46, 87–101 (2014). https://doi.org/10.1007/s10455-014-9412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9412-6

Keywords

Navigation