Skip to main content
Log in

Invariant Einstein metrics on flag manifolds with four isotropy summands

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A generalized flag manifold is a homogeneous space of the form G/K, where K is the centralizer of a torus in a compact connected semisimple Lie group G. We classify all flag manifolds with four isotropy summands by the use of \({\mathfrak{t}}\)-roots. We present new G-invariant Einstein metrics by solving explicity the Einstein equation. We also examine the isometric problem for these Einstein metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer D.N.: Lie Group Actions in Complex Analysis, Aspects of Mathematics, vol. E27. Vieweg, Braunschweig (1995)

    Google Scholar 

  2. Alekseevsky, D.V.: Homogeneous Einstein metrics. In: Differential Geometry and its Applications (Proccedings of the Conference), pp. 1–21. Univ. of. J. E. Purkyne, Chechoslovakia (1987)

  3. Alekseevsky D.V., Arvanitoyeorgos A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359(8), 3769–3789 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alekseevsky D.V., Perelomov A.M.: Invariant Kähler-Einstein metrics on compact homogeneous spaces. Funct. Anal. Appl. 20(3), 171–182 (1986)

    Article  Google Scholar 

  5. Alekseevsky, D.V., Spiro, A.F.: Flag Manifolds and Homogeneous CR Structures. Lecture notes given by the first author at the First Colloquium on Lie Theory and Applications in Spain (2000)

  6. Arvanitoyeorgos A.: New invariant Einstein metrics on generalized flag manifolds. Trans. Am. Math. Soc. 337(2), 981–995 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Arvanitoyeorgos A.: Geometry of flag manifolds. Int. J. Geom. Methods Mod. Phys. 3(5-6), 1–18 (2006)

    MathSciNet  Google Scholar 

  8. Arvanitoyeorgos, A., Chrysikos, I.: Invariant Einstein metrics on generalized flag manifolds with two isotropy summands, Preprint (2008), arXiv:0902.1826v1

  9. Arvanitoyeorgos, A., Chrysikos, I.: Motion of charged particles and homogeneous geodesics in Kähler C-spaces with two isotropy summands, Tokyo J. Math. (to appear)

  10. Besse A.L.: Einstein Manifolds. Springer-Verlag, Berlin (1986)

    Google Scholar 

  11. Bordeman M., Forger M., Römer H.: Homogeneous Kähler manifolds: paving the way towards new supersymmetric sigma models. Comm. Math. Phys. 102, 604–647 (1986)

    Article  Google Scholar 

  12. Borel A.: Kahlerian coset spaces of semisimple Lie groups. Proc. Natl Acad. Sci. USA 40, 1147–1151 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  13. Borel A., Hirzebruch F.: Characteristics classes and homogeneous spaces I. Am. J. Math. 80, 458–538 (1958)

    Article  MathSciNet  Google Scholar 

  14. Böhm C., Kerr M.: Low-dimensional homogeneous Einstein manifolds. Trans. Amer. Math. Soc. 358(4), 1455–1468 (2005)

    Article  Google Scholar 

  15. Böhm C., Wang M., Ziller W.: A variational approach for homogeneous Einstein metrics. Geom. Funct. Anal. 14(4), 681–733 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bourbaki N.: Éléments De Mathématique: Groupes et algèbres De Lie, Chapitres 4, 5 et 6. Masson Publishing, Paris (1981)

    Google Scholar 

  17. Boyer C.P., Galicki K.: On Sasakian-Einstein geometry. Int. J. Math. 11, 873–909 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Burstall F.E.: Riemannian twistor spaces and holonomy groups. In: Bailey, T.N., Baston, R.J. (eds) Twistors in Mathematics and Physics, pp. 53–70. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  19. Burstall, F.E., Rawnsley, J.H.: Twistor Theory for Riemannian Symmetric Spaces. Lectures Notes in Mathematics, Springer-Verlag (1990)

  20. Dickinson W., Kerr M.: The geometry of compact homogeneous spaces with two isotropy summands. Ann. Glob. Anal. Geom. 34, 329–350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dos Santos E.C.F., Negreiros C.J.C.: Einstein metrics on flag manifolds. Revista Della, Unión Mathemática Argetina 47(2), 77–84 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Gorbatzevich, V.V., Onishchik, A.L., Vinberg, E.B.: Structure of Lie Groups and Lie Algebras, Encycl. Math. Sci. v41, Lie Groups and Lie Algebras-3, Springer–Verlag

  23. Graev M.M.: On the number of invariant Einstein metrics on a compact homogeneous space, Newton polytopes and contraction of Lie algebras. Int. J. Geom. Methods Mod. Phys. 3(5–6), 1047–1075 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Heber J.: Noncompact homogeneous Einstein spaces. Invent. Math. 133, 279–352 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  26. Itoh M.: On curvature properties of Kähler C-spaces. J. Math. Soc. Jpn 30(1), 39–71 (1978)

    Article  Google Scholar 

  27. Kimura M.: Homogeneous Einstein metrics on certain Kähler C-spaces. Adv. Stud. Pure Math. 18(I), 303–320 (1990)

    Google Scholar 

  28. LeBrun, C., Wang, M. (eds): Surveys in Differential Geometry, Volume VI: Essays on Einstein Manifolds. International Press, Boston (1999)

    Google Scholar 

  29. Lomshakov, A., Nikonorov, Yu.G., Firsov, E.: Invariant Einstein Metrics on Three-Locally-Symmetric spaces. (Russian) Mat. Tr. 6(2), 80–101 (2003), (engl. transl. in Siberian Adv. Math. 14(3), 43–62 (2004))

  30. Nikonorov Yu.G.: Compact homogeneous Einstein 7-manifolds. Geom. Dedic. 109, 7–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nikonorov Yu.G., Rodionov E.D., Slavskii V.V.: Geometry of homogeneous Riemannian manifolds. J. Math. Sci. 146(6), 6313–6390 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nishiyama M.: Classification of invariant complex structures on irreducible compact simply connected coset spaces. Osaka J. Math. 21, 39–58 (1984)

    MATH  MathSciNet  Google Scholar 

  33. Park J.-S., Sakane Y.: Invariant Einstein metrics on certain homogeneous spaces. Tokyo J. Math. 20(1), 51–61 (1997)

    Article  MathSciNet  Google Scholar 

  34. Sakane Y.: Homogeneous Einstein metrics on flag manifolds. Lobachevskii J. Math. 4, 71–87 (1999)

    MATH  MathSciNet  Google Scholar 

  35. Samelson H.: Notes on Lie Algebras. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  36. Siebenthal J.: Sur certains modules dans une algébre de Lie semisimple. Comment. Math. Helv. 44(1), 1–44 (1964)

    Article  Google Scholar 

  37. Tian G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wang H.C.: Closed manifolds with homogeneous complex structures. Am. J. Math. 76(1), 1–32 (1954)

    Article  MATH  Google Scholar 

  39. Wang M., Ziller W.: On normal homogeneous Einstein manifolds. Ann. Sci. Éc. Norm. Sup. 18(4), 563–633 (1985)

    MATH  MathSciNet  Google Scholar 

  40. Wang M., Ziller W.: Existence and non-excistence of homogeneous Einstein metrics. Invent. Math. 84, 177–194 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Chrysikos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvanitoyeorgos, A., Chrysikos, I. Invariant Einstein metrics on flag manifolds with four isotropy summands. Ann Glob Anal Geom 37, 185–219 (2010). https://doi.org/10.1007/s10455-009-9183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-009-9183-7

Keywords

Mathematics Subject Classification (2000)

Navigation