Skip to main content
Log in

Viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba

  • OriginalPaper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba (NARC). The samples were taken in fifteen areas (five points for the three floors) at 2 days (rainy and dry seasons) using a biocolector SAS in 3 h: 10:00 a.m., 1:00 p.m. and 4:00 p.m. The fungal concentration was indicated as colony forming units per cubic meter of air (cfu/m3 of air). It was concluded that indoor air of the NARC was not polluted due to the average fungal concentration that was obtained (59 and 327 cfu/m3 of air in rainy and dry seasons, respectively). In front of the electric transformers, the fungal concentration was significantly higher than those obtained along the corridors of the lower-ground floor. A trend to the increasing of fungal concentration was observed: when the floors were increased, in dry season was higher than rainy season, where also there was biggest fungal diversity. Among the fungal genera isolated, Aspergillus had the highest relative frequency of appearance, and in dry season, it was isolated Actinobacillus sp. (Actinomycetes). Six fungal species were isolated in both samplings: Aspergillus alliaceus, Aspergillus niger, Cladosporium cladosporioides, Fusarium oxysporum, Penicillium chrysogenum and Mucor racemosus. All of fungal species isolated have high biodeteriogenic capacity, and the 61 % showed pathogenic attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anaya, M., Castro, M., Borrego, S. F., & Cobo, H. C. (2015). Influencia del campo magnético sobre la distribución de los hongos en el aire de un local cerrado. Revista de la Sociedad Venezolana de Microbiología, 35, 47–52.

    Google Scholar 

  • Barnett, H. L., & Hunter, B. B. (2003). Illustrated genera of imperfect fungi (4th ed.). St Paul, Minnesota: APS Press.

    Google Scholar 

  • Bogomolova, E., & Kirtsideli, I. (2009). Airborne fungi in four stations of the St. Petersburg underground railway system. International Biodeterioration and Biodegradation, 63, 156–160.

    Article  CAS  Google Scholar 

  • Borrego, S., Lavin, P., Perdomo, I., Gómez de Saravia, S., & Guiamet, P. (2012). Determination of indoor air quality in archives and the biodeterioration of the documentary heritage. ISRN Microbiology,. doi:10.5402/2012/680598.

    Google Scholar 

  • Borrego, S., & Molina, A. (2014). Comportamiento de la aeromicrobiota en dos depósitos del Archivo Nacional de la República de Cuba durante 7 años de estudio. AUGMDOMUS, 6, 1–24.

    Google Scholar 

  • Borrego, S., & Perdomo, I. (2012). Aerobiological investigations inside repositories of the National Archive of the Republic of Cuba. Aerobiologia, 28, 303–316.

    Article  Google Scholar 

  • Borrego, S., & Perdomo, I. (2014). Characterization of air mycobiota in two repositories of the National Archives of the Republic of Cuba. Revista Iberoamericana de Micología, 31(3), 182–187.

    Article  Google Scholar 

  • Borrego, S., Perdomo, I., Guiamet, P., & Gómez de Saravia, S. (2010). Study of the microbial concentration in the air in repositories of the National Archive of Cuba. AUGMDOMUS, 1, 114–133.

    Google Scholar 

  • Cappitelli, F., & Sorlini, C. (2010). Paper and manuscripts. In R. Mitchell & C. J. McNamara (Eds.), Cultural heritage microbiology Fundamental studies in conservation science (pp. 45–59). Washington DC: ASM Press.

    Google Scholar 

  • Ellis, D. (2006). Aspergillus. Hyaline hyphomycetes. Fungal descriptions. Mycology online. School Molecular & Biomedical Science. The University of Adelaide, Australia. http://www.mycology.adelaide.edu.au/fungal.Descriptions/Hyphomycetes(hyaline)/Aspergillus/index.html Accessed 6 Sep 2004.

  • Esquivel, P. P., Mangiaterra, M., Giusuiano, G., & Sosa, M. A. (2003). Microhongos anemófilos en ambientes abiertos de dos ciudades del nordeste argentino. Boletín Micológico, 18, 21–28.

    Google Scholar 

  • Goren, S. (2010). Humedad ambiental. In Manual para la conservación del papel: nueva era de la conservación preventiva y su aplicación actualizada (pp. 47–60). Ed. Alfagrama. Buenos Aires, Argentina.

  • Holt, J. G. (Ed.). (1984). Bergey′s manual of systematic bacteriology (Vol. 1). Baltimore, London: Williams & Wilkins.

    Google Scholar 

  • Hussein, K., Hargreaves, M., Smith, J., Ristovsky, Z., Agranovsky, V., & Morawska, L. (2008). Performance of UVAPS with respect to detection of airborne fungi. Journal of Aerosol Science, 39, 175–189.

    Article  Google Scholar 

  • Jamieson, K. S., ApSimona, H. M., Jamiesona, S. S., Bella, J. N. B., & Yostb, M. G. (2007). The effects of electric fields on charged molecules and particles in individual microenvironments. Atmospheric Environment, 41, 5224–5235.

    Article  CAS  Google Scholar 

  • Jelenska, M., Górka, B., & Król, B. (2011). Magnetic properties of dust of indicators of indoor air pollution: Preliminary results. Management of Indoor Air Quality, 1, 129–136.

    Article  Google Scholar 

  • Jordanova, D., Jordanova, N., Lanos, P., Petrov, P., & Tsacheva, T. (2012). Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochemistry, Geophysics, Geosystems, 13(8), 2–27.

    Article  Google Scholar 

  • Jordanova, N., Jordanova, D., Yankova, R., Petrov, P., Popov, T., & Tsacheva, T. (2010). Magnetic and aerobiological studies of indoor and outdoor dust from Bulgaria. Disponibleen. http://www.ig.cas.cz/Castle2010/Abstracts/Jordanova.pdf.

  • Kakutani, K., Matsuda, Y., Kimbara, J., Osamura, J., & Kusakari, S. (2012). Practical application of an electric field screen to an exclusion of flying insect pests and airborne fungal conidia from greenhouses with a good air penetration. Journal of Agricultural Science, 4(5), 51–60.

    Article  Google Scholar 

  • Lee, K. S., Bartlett, K. H., Brauer, M., Stephens, G. M., Black, W. A., & Teschke, K. (2004). A field comparison of four samplers for enumerating fungal aerosol. Sampling characteristics. Indoor Air, 14, 360–366.

    Article  CAS  Google Scholar 

  • Levetin, E. (2002). Aerobiology of agricultural pathogens. Dispersal mechanism. In C. J. Hurst, R. L. Crawford, M. J. McInerney, G. R. Knudsen & L. D. Stetzenback (Eds.), Manual of environmental microbiology (2nd ed., pp. 884–897). Washington DC: ASM Press.

    Google Scholar 

  • Llop, A., Valdés, D., Vivanco, M. M., & Zuazo, J. (2001). Microbiología y parasitología médica (3rd ed., Vol. 1). Havana: Ciencias Médicas.

    Google Scholar 

  • Micali, O., Montacutelli, R., & Tarsitani, G. (2003). Pathogenic microorganisms and situations of risk to man. In P. Mandrioli, et al. (Eds.), Cultural heritage and aerobiology (pp. 31–43). Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Nowoisky, J. F., Burrows, S. M., Xie, Z., Engling, G., Solomon, P. A., Fraser, M. P., et al. (2012). Biogeography in the air: fungal diversity over land and oceans. Biogeosciences, 9(3), 1125–1136.

    Article  Google Scholar 

  • Pasquarella, C., Sansebastiano, G. E., Saccani, E., Ugolotti, M., Mariotti, F., Boccuni, C., et al. (2010). Proposal for an integrated approach to microbial environmental monitoring in cultural heritage: experience at the Correggio exhibition in Parna. Aerobiologia, 27, 203–211.

    Article  Google Scholar 

  • Pitt, J. I. (2000). A laboratory guide to common Penicillium species (3rd ed.). Canberra: Food Science Australia.

    Google Scholar 

  • Raisi, L., Lazaridis, M., & Katsivela, E. (2010). Relationship between airborne microbial and particulate matter concentrations in the ambient air at a Mediterranean site. Global NEST Journal, 12, 84–91.

    Google Scholar 

  • Rojas, T. I., & Aira, M. J. (2012). Fungal biodiversity indoor environments in Havana, Cuba. Aerobiologia, 28, 367–374.

    Article  Google Scholar 

  • Rojas, T. I., Aira, M. J., Amado, B., Cruz, I. L., & González, S. (2012). Fungal biodeterioration in historic building of Havana. Cuba. Grana, 51, 44–51.

    Article  Google Scholar 

  • Rojas, T. I., Martínez, E., Aira, M. J., & Almaguer, M. (2008). Aeromicota de ambientes internos: comparación de métodos de muestreo. Boletín Micológico (Chile), 23, 67–73.

    Google Scholar 

  • Roussel, S., Reboux, G., Millon, L., Parchas, M. D., Boudih, S., Skana, F., et al. (2012). Microbiological evaluation of ten French archives and link to occupational symptoms. Indoor Air, 22(6), 514–522.

    Article  CAS  Google Scholar 

  • Sáenz, C., & Gutiérrez, M. (2003). Esporas atmosféricas en la Comunidad de Madrid. Instituto de Salud Pública (p. 49). Madrid: Industrias Gráficas MAE.

    Google Scholar 

  • Sarmiento, A. (2013). Movimiento del sol. Distribución de la energía solar. Energía solar fotovoltaica. Temas seleccionados (pp. 19–25). Cuba: Academia.

    Google Scholar 

  • Shimizu, K., Matsuda, Y., Nonomura, T., Ikeda, H., Tamura, N., Kusakari, S., et al. (2007). Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstoniasolanacearum and Fusariumoxysporum f. sp. radicis-lycopersici and airborne conidia of Oidiumneolycopersici with an ozone-generative electrostatic spore precipitator. Plant Pathology, 56, 987–997.

    Article  Google Scholar 

  • Takikawa, Y., Matsuda, Y., Nonomura, T., Kakutani, K., Kimbara, J., Osamura, K., et al. (2014). Electrostatic guarding of bookshelves for mould-free preservation of valuable library books. Aerobiologia,. doi:10.1007/s10453-014-9340-8.

    Google Scholar 

  • Zielińska, K., Kozajda, A., Piotrowska, M., & Szadkowska, I. (2008). Microbiological contamination with moulds in work environment in libraries and archive storage facilities. Annals of Agricultural and Environmental Medicine, 15, 71–78.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from the Assistance Program for Archives of Latin America, ADAI, from Spain (Project 064/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía F. Borrego.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaya, M., Borrego, S.F., Gámez, E. et al. Viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba. Aerobiologia 32, 513–527 (2016). https://doi.org/10.1007/s10453-016-9429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-016-9429-3

Keywords

Navigation