Skip to main content
Log in

Airborne fungal pollution at waste application facilities

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

This study aims to evaluate airborne mesophilic and thermophilic fungal concentrations and types at a wastewater treatment plant (WWTP) and a biosolid landfill, in Egypt. Air samples were collected at 200 m upwind, and on-site and 300 m downwind by using liquid impinger sampler, calibrated to draw 12.5 L/min, for 20 min. Fungal concentrations ranged between 427–7 280 CFU/m3 for mesophilic and 0–3,968 CFU/m3 for thermophilic fungi. The concentrations exceeded the suggested occupational exposure limit value of 500 CFU/m3. Aspergillus fumigatus represented ~34.9–55 % and 60.4–71.4 % of the total mesophilic and thermophilic fungi, respectively. Significant differences were observed between the upwind and downwind concentrations at both waste facilities, and between on-site and downwind fungal concentrations (P ≤ 0.01) at the landfill, and only for thermophilic fungal concentrations at the WWTP (P ≤ 0.05). Higher fungal diversity was found at the landfill site. A. terreus, A. ochraceus, Acremonium, Geotrichum, Aureobasidium, Sepedomium, and Trichophyton were only detected at the landfill sites. Fungal concentrations positively correlated with temperature. Higher concentrations were observed at wind speed <3 m/s at the WWTP and >3 m/s at the landfill. Wind speed positively affected concentrations at the landfill. The regression model showed that relative humidity was a significant determinant of fungal concentrations 300 m downwind distances. Waste application facilities increase fungal concentrations on-site which may consequently deteriorate air quality in the nearby areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel Hameed, A., & El Gendy, S. A. (2013). Evaluation of airborne actinomycetes at waste application facilities. Atmospheric Pollution Research, 4, 1–7.

    Google Scholar 

  • Abdel Hameed, A. A., El Hawarry, A. S., & Kamel, M. M. (2008). Prevalence and distribution of airborne and waterborne fungi and actinomycetes in the Nile River. Aerobiologia, 24, 231–240.

    Article  Google Scholar 

  • Abdel Hameed, A. A., Khoder, M. I., Ibrahim, Y. H., Saeed, Y., Osman, M. E., & Ghanem, S. (2012). Study on some factors affecting survivability of airborne fungi. Science of the Total Environment, 414, 696–700.

    Article  CAS  Google Scholar 

  • Abu-Dieyeh, M. H., Barham, R., Abu-Elteen, K., Al-Rashidi, R., & Shaheen, I. (2010). Seasonal variation of fungal spore populations in the atmosphere of Zarqa area, Jordan. Aerobiologia, 26, 263–276.

    Article  Google Scholar 

  • ACGIH (1989). Bioaerosols: Assessment and control. J. Marcher (Ed.), Cincinnati: American Conference of Governmental Industrial Hygienists.

  • Adhikari, A., Reponen, T., Grinshpun, S. A., Martuzevicius, D., & LeMasters, G. (2006). Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environmental Pollution, 140, 16–28.

    Article  CAS  Google Scholar 

  • AIHA. (1996). Field Guide for the Determination of Biological Contaminants in Environmental Samples (2nd ed.). Virginia: American Industrial Hygiene Association.

    Google Scholar 

  • Alghamdi, M. A., Shamy, M., Ana Redal, M., Khoder, M., Abdel Hameed, A., & Elserougy, S. (2014). Microorganisms associated particulate matter: A preliminary study. Science of the Total Environment, 479–480, 109–116.

    Article  Google Scholar 

  • Allmers, H., Huber, H., & Baur, X. (2000). Two year follow up of a garbage collector with allergic bronchopulmonary aspergillosis (ABPA). American Journal of Industrial Medicine, 37, 428–442.

    Article  Google Scholar 

  • Barnett, H. L., & Hunter, B. B. (1999). Illustrated genera of imperfect fungi (4th ed., p. 218). St. Paul, MN: The American Phytopathological Society.

    Google Scholar 

  • Coccia, A. M., Bianca Gucci, P. M., Lacchetti, I., Paradiso, R., & Scaini, F. (2010). Airborne microorganisms associated with waste management and recovery: Biomonitoring methodologies. Ann Ist super SAnItà, 46(3), 288–292.

    Google Scholar 

  • Cox, C., & Wathes, M. C. (1995). Bioaerosols Handbook (pp. 77–99). USA: CRC Press.

    Google Scholar 

  • Cyprowski, M., Sowiak, M., Soroka, P. M., Buczyrńska, A., Kozajda, A., & Szadkowska-Stańczyk, I. (2008). Assessment of occupational exposure to fungal aerosols in wastewater treatment plants. Medycyna Pracy, 59(5), 365–371.

    Google Scholar 

  • De Hoog, G. S., Guarro, J., Gene, G., & Figueiras, M. (2000). Atlas of clinical fungi (2nd ed.). Utrecht: Cenraalbureau voor Schimmelcultures.

    Google Scholar 

  • El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1997). Environmental impacts of solid waste landfilling. Journal of Environmental Management, 50, 1–25.

    Article  Google Scholar 

  • Fakhrul-Razi, A., Alam, M. Z., Idris, A., Abd-Aziz, S., & Molla, A. H. (2002). Filamentous fungi in Indah Water Konsortium (IWK) sewage treatment plant for biological treatment of domestic wastewater sludge. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 37, 309–320.

    Article  CAS  Google Scholar 

  • Filipkowska, Z., Gotkowska-Płachta, A., Korzeniewska, E., & Pawlukiewicz, A. (2007). Micological contamination of the atmospheric air at municipal wastewater treatment plant with activated sludge tanks aerated by CELPOX devices. Ochrona Środowiska i Zasobów Naturalnych IOŚ, 32, 240–245.

    Google Scholar 

  • Fischer, J. L., Beffa, T., Lyon, P.-F., & Aragno, M. (1998). Aspergillus fumigatus in windrow composting: Effect of turning frequency. Waste Management Research, 16, 320–329.

    Article  Google Scholar 

  • Forgie, D. J. L., Sasser, L. W., & Neger, M. K. (2004). Compost facility requirements guideline: How to comply with part 5 of the organic matter recycling regulation, http://www.env.gov.bc.ca/epd/codes/omr/pdf/compost.pdf (Accessed in April, 2014).

  • Gioulekas, D., Damialis, A., Papakosta, D., Spieksma, F., Giouleka, P., & Patakas, D. (2004). Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. Journal of Investigational Allergology and Clinical Immunology, 14, 225–231.

    CAS  Google Scholar 

  • Gotkowska-Płachta, A., Filipkowska, Z., Korzeniewska, E., Janczukowicz, W., Dixon,B.; Gołaś, I.; & Szwalgin, D. (2013). Airborne microorganisms emitted from wastewater treatment plant treating domestic wastewater and meat processing industry wastes. CLEANSoil, Air, Water, 41(5), 429–436.

  • Goyer, N., Lavoie, J., lazure, L., & Marchand, G. (2001). Bioaerosols in the workplace: Evaluation, control and prevention guide. Institute de Recherche en Sante elen securite du travail du Quebec.

  • Grisoli, P., Rodolfi, M., Villani, S., Grignan, E., Cottica, D., & Berri, A., et al. (2009). Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environmental Research, 109(2), 135–142.

    Article  CAS  Google Scholar 

  • Heinonen-Tanski, H., Reponen, T., & Koivunen, J. (2009). Airborne enteric coliphages and bacteria in sewage treatment plants. Water Research, 43, 2558–2566.

    Article  CAS  Google Scholar 

  • Herr, C. E. W., Nieden, A., Jankofsky, M., Stilianakis, N. I., Boedeker, R.-H., & Eikmann, T. F. (2003). Effects of bioaerosol polluted outdoor air on airways of residents: A cross sectional study. Occupational and Environmental Medicine, 60, 336–342.

    Article  CAS  Google Scholar 

  • Huang, C.-Y., Lee, C.-C., Li, F.-C., Ma, Y.-P., & Su Jenny, H.-J. (2002). The seasonal distribution of bioaerosols in municipal landfill sites: A 3-yr study. Atmospheric Environment, 36, 4385–4395.

    Article  CAS  Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—A review. Science of the Total Environment, 326(1–3), 151–180.

    Article  CAS  Google Scholar 

  • Kiviranta, H., Tuomainen, A., Reiman, M., Laitinen, S., Nevalainen, A., & Liesivuori, J. (1999). Exposure to airborne microorganisms and volatile organic compounds in different types of waste handling. Annals of agricultural and environmental medicine, 6(1), 39–44.

    CAS  Google Scholar 

  • Klich, M. A. (2002). Identification of common Aspergillus species. Utrecht: Centraalbureau voorSchimmelcultures.

    Google Scholar 

  • Korzeniewska, E., Filipkowska, Z., Gotkowska-Płachta, A., Janczukowicz, W., Dixon, B., & Czułowska, M. (2009). Determination of emitted airborne microorganisms from a BIO-PAK wastewater treatment plant. Water Research, 43, 2841–2851.

    Article  CAS  Google Scholar 

  • Korzeniewska, E., Filipkowska, Z., Gotkowska-Płachta, A., Janczukowicz, W., & Rutkowski, B. (2008). Bacteriological pollution of the atmospheric air at the municipal and dairy wastewater treatment plant area and in its surroundings. Archives of Environmental Protection, 34(4), 13–23.

    Google Scholar 

  • Kwong-Chung, K. J., & Bennet, J. E. (1992). Medical mycology. Philadelphia: Lea and Febiger.

    Google Scholar 

  • Li, D.-W., & Kendrick, B. (1995). A year-round study of functional relationships of airborne fungi with meteorological factors. International Journal of Biometeorology, 39, 74–80.

    Article  CAS  Google Scholar 

  • Li, Y. P., Yang, L. W., Meng, Q. L., Qiu, X. H., & Feng, Y. J. (2013). Emission characteristics of microbial aerosols in a municipal sewage treatment plant in Xi’an, China. Aerosol and Air Quality Research, 13, 343–349.

    Google Scholar 

  • Lighthart, B. (1973). Survival of airborne bacteria in a high urban concentration of carbon monoxide. Applied and Environment Microbiology, 25, 86–91.

    CAS  Google Scholar 

  • Lighthart, B., & Kim, J. (1989). Simulation of airborne microbial droplet transport. Applied and Environment Microbiology, 55, 2349–2355.

    CAS  Google Scholar 

  • Nadala, M., Inza, I., Schuhmacher, M., Figueras, M. J., & Domingo, J. L. (2009). Health risks of the occupational exposure to microbiological and chemical pollutants in a municipal waste organic fraction treatment plant. International Journal of Hygiene and Environmental Health, 212, 661–669.

    Article  Google Scholar 

  • O’Gorman, C. M. (2011). Airborne Aspergillus fumigatus conidia: A risk factor for Aspergillosis. Fungal Biology Reviews, 25, 151–157.

    Article  Google Scholar 

  • Pillai, S. D., & Ricke, S. C. (2002). Bioaerosols from municipal and animal wastes: Background and contemporary issues. Canadian Journal of Microbiology, 48, 681–696.

    Article  CAS  Google Scholar 

  • Pitt, J. I. (1979). The genus Penicillium and its telomorphic states Eupenicillium and Talaromyces (p. 634). London: Academic Press.

    Google Scholar 

  • Platt, S. D., Martin, C. J., Hunt, S. M., & Lewis, C. W. (1989). Damp housing, mould growth and symptomatic health state. British Medical Journal, 298, 1673–1678.

    Article  CAS  Google Scholar 

  • Polish Standards (1989). PN-89/Z-04111/03 [Polska Norma PN-89/Z- 04111/03]. Protection of air cleanness. Microbiological study. Enumeration of microscopic fungi in atmospheric air (emission) during samples collection by impact and sedimentation methods (in Polish).

  • Pyrri, I., & Kapsanaki-Gotsi, E. (2007). A comparative study on the airborne fungi in Athens, Greece, by viable and non-viable sampling methods. Aerobiologia, 23, 3–15.

    Article  Google Scholar 

  • Raper, K., & Fennell, D. (1973). The genus Aspergillus (p. 686). Baltimore: The Williams and Wilkins Co.

    Google Scholar 

  • Recer, G. M., Browne, M. L., Horn, E. G., Hill, K. M., & Boehler, W. F. (2001). Ambient air levels of Aspergillus fumigatus and thermophilic actinomycetes in a residential neighborhood near a yard-waste composting facility. Aerobiologia, 17(2), 99–108.

    Article  Google Scholar 

  • Sánchez-Monedero, M. A., Aguilar, M. I., Fenoll, R., & Roig, A. (2008). Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water Research, 42, 3739–3744.

    Article  Google Scholar 

  • Schrapp, K., & Al-Mutairi, N. (2010). Associated health effects among residences near Jeleeb Al-Shuyoukh landfill. American Journal of Environmental Sciences, 6(2), 184–190.

    Article  CAS  Google Scholar 

  • Shen, D. K., Noodeh, A. D., Kazemi, A., Grillot, R., Robson, G., & Brugere, J.-F. (2004). Characterisation and expression of phospholipases fungus A. fumigatus. FEMS Microbiology Letters, 239, 87–93.

    Article  CAS  Google Scholar 

  • Smith, R. S. (1966). The liberation of cereal stem rust uredospores under various environmental conditions in a wind tunnel. Transactions of the British Mycological Society, 49, 33–41.

    Article  Google Scholar 

  • Solans, X., Alonso, R. M., Constans, A., & Mansilla, A. (2007). Occupational exposure to airborne fungi and bacteria in a household recycled container sorting plant. Revista iberoamericana de micologia, 24(2), 131–135.

    Article  Google Scholar 

  • Swan, J. R. M., Kesley, A., Crook, B., & Gilbert, E. J. (2003). Occupational and environmental exposure to bioaerosols from compost and potential health effects-A critical review of published data. Licensing Division, Her Majesty's Stationery Office, St Clements House, 2-16 Colegate, Norwich NR3 1BQ .

  • Syzdek, L. D., & Haines, J. H. (1995). Monitoring Aspergillus fumigatus aerosols from a composting facility. Aerobiologia, 11, 87–93.

    Article  Google Scholar 

  • Taha, M. P. M., Drew, G. H., Longhurst, P. J., Smith, R., & Pollard, S. J. T. (2006). Bioaerosol releases from compost facilities; evaluating passive and active source terms at a green waste facility for improved risk assessments. Atmospheric Environment, 40, 1159–1169.

    Article  CAS  Google Scholar 

  • Tekaia, F., & Latge, J.-P. (2005). Aspergillus fumigatus: Saprophyte or pathogen? Current Opinion in Microbiology, 8, 385–392.

    Article  CAS  Google Scholar 

  • Thirumala, S., Manjunatha Reddy, A. H., Nathu, P., & Aravinda, H. B. (2012). Study of airborne fungi at solid waste generation sites of Davanagere city, Karnataka, India. International Journal of Research in Environmental Science and technology, 2(2), 17–21.

    Google Scholar 

  • Troutt, C., & Levetin, E. (2001). Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. International Journal of Biometeorology, 45, 64–74.

    Article  CAS  Google Scholar 

  • Viegas, C., Quintal Gomes, A., Graca, T., & Sabino, R. (2014). Aspergillus fumigatus occupational exposure in waste storage and incineration plants. Journal of the Air and Waste Management Association. doi:10.1080/10962247.2014.907839.

    Google Scholar 

  • Wéry, N. (2014). Bioaerosols from composting facilities—A review. Frontiers in Cellular and Infection Microbiology, 4(42), 1–9.

    Google Scholar 

  • WHO. (1990). Indoor air quality: Biological contaminants. European Series No. 31. Copenhagen: World Health Organization, Regional Publications.

    Google Scholar 

Download references

Acknowledgments

This work was funded by The National Research Centre, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Abdel Hameed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Hameed, A.A., Habeebuallah, T., Mashat, B. et al. Airborne fungal pollution at waste application facilities. Aerobiologia 31, 283–293 (2015). https://doi.org/10.1007/s10453-015-9364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-015-9364-8

Keywords

Navigation