Skip to main content
Log in

Unusual pathogenic bacterium isolated from microbial communities of bioaerosols at Chilean Patagonian lakes

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Bioaerosols are transported from warm regions and lower latitudes of the planet to colder regions and higher latitudes, such as the Chilean Patagonia. The role of bioaerosols deposition in remote lake ecosystems is a potentially important process, but it has not yet been fully studied. The aim of this study was to detect and characterize potentially pathogenic viable microorganisms in bioaerosols in a pristine area. Samples were collected from the air, at three remote lakes in the Chilean Patagonia, using a sterile filtration system equipped with 0.2-μm-pore-size nitrocellulose filters. The bacterial community present in bioaerosols was studied using scanning electron microscopy (SEM) and denaturing gradient gel electrophoresis. Isolates were identified and characterized for phenotypic and 16S rDNA analysis and antibiotic resistance. SEM observations of samples from each lake showed the presence of bacteria with different morphologies, and after culturing, the identification results revealed that they were strains of Acinetobacter, Alcaligenes, Edwarsiella, Pseudomonas, Burklolderia, Moraxella, Sphingomonas and CDC NO-1. CDC NO-1, uncommonly isolated worldwide, stands out from the rest of the isolates because it is a rarely found bacterium so far associated with dog and cat bites and was found at two out of three pristine lakes studied (Alto and Verde). This work demonstrates, for the first time, the presence of CDC NO-1, a clinically important Gram-negative microorganism, in bioaerosols and first report of CDC-NO1 isolation in Chile. Besides its presence in remote lakes, its antibiotic resistance is worth mentioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Augustowska, M., & Dutkiewicz, J. (2006). Variability of airborne microflora in a hospital ward within a period of one year. Annals of Agricultural and Environmental Medicine, 13, 99–106.

    Google Scholar 

  • Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., et al. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Research, 64, 109–119.

    Article  CAS  Google Scholar 

  • Beggs, C. B., Kerr, K. G., Noakes, C. J., Hathway, E. A., & Sleigh, P. A. (2008). The ventilation of multiple-bed hospital wards: review and analysis. American Journal of Infection Control, 36, 250–259.

    Article  Google Scholar 

  • Birch, M. E. (1998). Analysis of carbonaceous aerosols—Interlaboratory comparison. Analyst, 123, 851–857.

    Article  CAS  Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences, 104, 299–304.

    Article  CAS  Google Scholar 

  • Brosius, J., Palmer, M. L., Kennedy, P. J., & Noller, H. F. (1978). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proceedings of the National Academy of Sciences U.S.A., 75, 4801–4805.

    Article  CAS  Google Scholar 

  • Campos, V. L., León, C., Mondaca, M. A., Yañez, J., & Zaror, C. (2011). Arsenic mobilization by epilithic bacterial communities associated with volcanic rocks from Camarones River Atacama Desert Northern Chile. Archives Environmental Contamination and Toxicology, 61, 185–192.

    Article  CAS  Google Scholar 

  • Catalan, J., Camarero, L., Felip, M., Pla, S., Ventura, M., Buchaca, T., et al. (2006). High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica, 25, 551–584.

    Google Scholar 

  • Clinical and Laboratory Standards Institute (2008) Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Approved standard M45-A. Clinical and Laboratory Standards Institute, Wayne, PA.

  • Cox, C. S., & Wathes, C. M. (1995). Bioaerosols handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: Progress and prospects. Annals of Occupational Hygiene, 47, 187–200.

    Article  CAS  Google Scholar 

  • Dowd, S. E., & Maier, R. M. (2000). Aeromicrobiology. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmental microbiology (pp. 91–122). San Diego, CA: Academic Press.

    Google Scholar 

  • Echigo, A., Hino, M., Fukushima, T., Mizuki, T., Kamekura, M., & Usami, R. (2005) Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm). Saline Systems, 1(8).

  • Fahlgren, C., Hagstrom, A., Nilsson, D., & Li, U. (2010). Annual variations in the diversity, viability, and origin of airborne bacteria. Applied and Environment Microbiology, 76, 3015–3025.

    Article  CAS  Google Scholar 

  • Ferris, M. J., Muyzer, G., & Ward, D. M. (1996). Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied Environmental Microbiology, 62, 340–346.

    CAS  Google Scholar 

  • Griffin, D. W. (2004). Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia, 20, 135–140.

    Article  Google Scholar 

  • Griffin, D. W., Douglas, A. E., Westphal, A. E., & Gray, M. A. (2006). Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209. Aerobiologia, 22, 211–226.

    Article  Google Scholar 

  • Griffin, D. W., Garrison, V. H., Herman, J. R., & Shinn, E. A. (2001). African desert dust in the Caribbean atmosphere: Microbiology and public health. Aerobiologia, 17(3), 203–213.

    Article  Google Scholar 

  • Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143–157.

    Article  Google Scholar 

  • Grimalt, J., Fernandez, P., Berdie, L., Vilanova, R., Catalan, J., Psenner, R., et al. (2001). Selective trapping of organochlorine compounds in mountain lakes of temperate areas. Environmental Science & Technology, 35(13), 2690–2697.

    Article  CAS  Google Scholar 

  • Haas, C. N., Rose, J. B., & Gerba, C. P. (1999). Quantitative microbial risk assessment. New York: Wiley.

    Google Scholar 

  • Hameed, A., & Khodr, M. I. (2001). Suspended particulates and bioaerosols emitted from an agricultural non-point source. Journal of Environmental Monitoring, 3, 206–209.

    Article  CAS  Google Scholar 

  • Harper, T., Bridgewater, S., Brown, L., Pow-Brown, P., Stewart-Johnson, A., & Adesiyun, A. (2013). Bioaerosol sampling for airborne bacteria in a small animal veterinary teaching hospital. Infection Ecology and Epidemiology, 3, 20376.

    Article  Google Scholar 

  • Hollis, D., Moss, C., Daneshvar, M., Meadows, L., Jordan, J., & Hill, B. (1993). Characterization of Centers for Disease Control group NO-1, a fastidious, nonoxidative, gram-negative organism associated with dog and cat bites. Journal of Clinical Microbiology, 31, 746–748.

    CAS  Google Scholar 

  • Isard, S. A., & Gage, S. H. (2001). Flow of life in the atmosphere: An airscape approach to understanding invasive organisms (p. 304). Detroit, MI: Michigan State University Press.

    Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations a review. Science of the Total Environment, 326, 151–180.

    Article  CAS  Google Scholar 

  • Jones, S. E., Newton, R. J., & McMahon, K. D. (2008). Potential for atmospheric deposition of bacteria to influence bacterioplankton communities. FEMS Microbiology Ecology, 64, 388–394.

    Article  CAS  Google Scholar 

  • Kaiser, R. M., Garman, R. L., Bruce, M. G., Weyant, R. S., & Ashford, D. A. (2002). Clinical significance and epidemiology of NO-1, an unusual bacterium associated with dog and cat bites. Emerging Infectious Diseases, 8, 171–174.

    Article  Google Scholar 

  • Kuske, C. R. (2006). Current and emerging technologies for the study of bacteria in the outdoor air. Current Opinion in Biotechnology, 17, 291–296.

    Article  CAS  Google Scholar 

  • Lacey, M. E., & West, J. S. (2006). The air spora: A manual for catching and identifying airborne biological particles. Dordrecht: Springer.

    Book  Google Scholar 

  • Leon, C., Campos, V., Urrutia, R., & Mondaca, M. A. (2012). Metabolic and molecular characterization of bacterial community associated to Patagonian Chilean oligotrophic-lakes of quaternary glacial origin. World Journal of Microbiology and Biotechnology, 28, 1511–1521.

    Article  CAS  Google Scholar 

  • Lighthart, B., & Shaffer, B. T. (1994). Bacterial flux from chaparral into the atmosphere in mid-summer at a high desert location. Atmospheric Environment, 28, 1267–1274.

    Article  Google Scholar 

  • Mendoza, G., Gutiérrez, L., Pozo-Gallardo, K., Fuentes-Ríos, D., Montory, M., Urrutia, R., et al. (2006). Polychlorinated biphenyls (PCBs) in mussels along the Chilean Coast. Environmental Science and Pollution Research, 13, 67–74.

    Article  CAS  Google Scholar 

  • Morales-Baquero, R., Pulido-Villena, E., Romera, O., Ortega-Retuerta, E., Conde-Porcuna, J. M., Pérez-Martínez, C., et al. (2006). Significance of atmospheric deposition to freshwater ecosystems in the southern Iberian Peninsula. Limnetica, 25, 171–180.

    Google Scholar 

  • Moulin, C., & Chiapello, I. (2006). Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophysical Research Letters,. doi:10.1029/2006GL025923.

    Google Scholar 

  • Neff, J. C., Ballantyne, A. P., Farmer, G. L., Mahowald, N. M., Conroy, J. L., Landry, C. C., et al. (2008). Increasing eolian dust deposition in the western United States linked to human activity. Nature Geoscience, 1, 189–195.

    Article  CAS  Google Scholar 

  • Polymenakou, P. (2012). Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 3, 87–102.

    Article  Google Scholar 

  • Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 1, 1–19.

    Article  Google Scholar 

  • Sarica, S., Asan, A., Otkun, M. T., & Ture, M. (2002). Monitoring indoor airborne fungi and bacteria in the different areas of Trakya University Hospital, Edirne, Turkey. Indoor and built Environment, 11, 285–292.

    Article  Google Scholar 

  • Sattler, B., Puxbaum, H., & Psenner, R. (2001). Bacterial growth in super cooled cloud droplets. Geophysical Research Letters, 28, 239–242.

    Article  Google Scholar 

  • Smith, D. J., Jaffe, D. A., Birmele, M. N., Griffin, D. W., Schuerger, A. C., Hee, J., et al. (2012). Free tropospheric transport of microorganisms from Asia to North America. Microbial Ecology, 64, 973–985.

    Article  CAS  Google Scholar 

  • Stetzenbach, L. D., Buttner, M. P., & Cruz, P. (2004). Detection and enumeration of airborne biocontaminants. Current Opinion in Biotechnology, 15, 170–174.

    Article  CAS  Google Scholar 

  • Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6, S737–S746.

    Article  Google Scholar 

  • Vighi, M. (2006). SETAC Europe Workshop Milan, Italy, 1–3 July 2004 Department of Environmental Sciences, University of Milano-Bicocca ‘The role of high mountains in the global transport of persistent organic chemicals’. Ecotoxicology and Environmental Safety, 63, 108–112.

    Article  CAS  Google Scholar 

  • Ward, B., Voytek, M. A., & Witzel, K. P. (1997). Phylogenetic diversity of natural populations of ammonia oxidizers investigated by specific PCR amplification. Microbial Ecology, 33, 87–96.

    Article  CAS  Google Scholar 

  • Winn, W., Allen, S., Janda, W., Koneman, E., Procop, G., Schrenckenberger, P., et al. (2008). Koneman-Diagnóstico microbiológico. Argentina: Editorial Médica Panamericana.

    Google Scholar 

  • Zucker, B. A., Rojan, S. T., & Muller, W. (2000). Airborne gram-negative bacterial flora in animal houses. Journal of Veterinary Medicine, Series B, 47, 37–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Conicyt Project No. 24110114 and DIUC Project: 211.36.39.1. The authors also thank Jorge Jimenez, PhD, of the University of Concepción, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor L. Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escalante, G., León, C.G., Giacomozzi, B. et al. Unusual pathogenic bacterium isolated from microbial communities of bioaerosols at Chilean Patagonian lakes. Aerobiologia 30, 323–331 (2014). https://doi.org/10.1007/s10453-014-9330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-014-9330-x

Keywords

Navigation