Skip to main content

Advertisement

Log in

Landscape-level predictions of diversity in river networks reveal opposing patterns for different groups of macroinvertebrates

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Aquatic biodiversity in rivers and streams is threatened in many regions worldwide. As biodiversity loss has severe consequences on ecosystem functioning, it is important to understand the causes of decline and to predict biodiversity in space and time. In order to achieve this, the identification of the driving factors and the appropriate choice of indicator groups are needed. We developed a spatially explicit habitat distribution model for aquatic macroinvertebrates in Swiss watercourse networks using national biodiversity monitoring data from 410 randomly selected sampling sites. We specifically looked at two worldwide frequently used macroinvertebrate indicator groups. Using generalized linear models, we related firstly species richness of mayfly, stonefly and caddisfly (Ephemeroptera, Plecoptera, Trichoptera; EPT) and secondly richness of all macroinvertebrate families and higher-order taxa (macroinvertebrate family richness) to 38 nationwide available environmental variables. We then predicted richness of both indicator groups at the landscape scale, providing the first nationwide prediction of EPT species and macroinvertebrate family richness. Consistent with previous work, we found that variables describing land use and topology were most important for explaining richness at the landscape level. However, the two indicator groups showed opposing patterns of richness and a different sensitivity to land-use variables. This indicates that the sole use of one of these groups may be misleading with respect to water quality assessments and to the identification of overall diversity hotspots. We conclude that commonly used richness patterns derived from aggregated groups, such as family-level macroinvertebrate richness, may be less appropriate for conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiar FC, Ferreira MT, Pinto P (2002) Relative influence of environmental variables on macroinvertebrate assemblages from an Iberian basin. J N Am Benthol Soc 21:43–53. doi:10.2307/1468298

    Article  Google Scholar 

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Altermatt F (2013) Diversity in riverine metacommunities: a network perspective. Aquat Ecol 47:365–375. doi:10.1007/s10452-013-9450-3

    Article  Google Scholar 

  • Altermatt F, Seymour M, Martinez N (2013) River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J Biogeogr 40:2249–2260. doi:10.1111/jbi.12178

    Article  Google Scholar 

  • Altermatt F, Alther R, Fišer C, Jokela J, Konec M, Küry D, Mächler E, Stucki P, Westram AM (2014) Diversity and distribution of freshwater amphipod species in Switzerland (Crustacea: Amphipoda). PLoS ONE 9:1–12. doi:10.1371/journal.pone.0110328

    Article  Google Scholar 

  • BAFU (2012) Einzugsgebietsgliederung Schweiz. EZGG-CH, Topographische Einzugsgebiete der Schweizer Gewässer

    Google Scholar 

  • BAFU (2015) Gewässerabschnittsbasierte Einzugsgebietsgliederung der Schweiz GABEZGGCH mit zusätzlicher Darstellung von Landnutzungsdaten (Vektor25-Daten: VECTOR25 © swisstopo; Areal-Statistik:BFS, GEOSTAT; Ackerkulturen: BFS, Landwirtschaftliche Betriebszählung 2008; Daten der Amtlichen Vermessung: DM.01-AV_CH © Amtliche Vermessung Schweiz/FL Gebäude: swissBUILDINGS 3D © swisstopo; ARA-Daten: BAFU, ARA-Datenbank) (data retrieved 2015)

  • Bertuzzo E, Carrara F, Mari L, Altermatt F, Rodriguez-Iturbe I, Rinaldo A (2016) Geomorphic controls on elevational gradients of species richness. Proc Natl Acad Sci USA 113:1737–1742. doi:10.1073/pnas.1518922113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchet S, Helmus MR, Brosse S, Grenouillet G (2014) Regional vs local drivers of phylogenetic and species diversity in stream fish communities. Freshw Biol 59:450–462

    Article  Google Scholar 

  • Bouchard RW (2004) Guide to aquatic macroinvertebrates of the Upper Midwest. Water Resource Center, University of Minnesota, St. Paul

    Google Scholar 

  • Brown BL, Swan CM, Auerbach DA, Grant EHC, Hitt NP, Maloney KO, Patrick C (2011) Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J N Am Benthol Soc 30:310–327

    Article  Google Scholar 

  • Carrara F, Rinaldo A, Giometto A, Altermatt F (2014) Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes. Am Nat 183:13–25

    Article  PubMed  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:34–242

    Article  Google Scholar 

  • Clarke A, Nally RM, Bond N, Lake PS (2008) Macroinvertebrate diversity in headwater streams: a review. Freshw Biol 53:1707–1721

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi:10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  • Egler M, Buss DF, Moreira JC, Baptista DF (2012) Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil. Braz J Biol 72:437–443. doi:10.1590/S1519-69842012000300004

    Article  CAS  PubMed  Google Scholar 

  • Friedman J, Hastie T, Tibshirani T (2010) glmnet: Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22. http://www.jstatsoft.org/v33/i01

  • Grönroos M, Heino J (2012) Species richness at the guild level: effects of species pool and local environmental conditions on stream macroinvertebrate communities. J Anim Ecol 81:679–691. doi:10.1111/j.1365-2656.2011.01938.x

    Article  PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Heino J, Muotka T, Paavola R (2003) Determinants of macroinvertebrate in headwater diversity streams: regional and local influences. J Anim Ecol 72:425–434. doi:10.1046/j.1365-2656.2003.00711.x

    Article  Google Scholar 

  • Heino J, Melo AS, Bini LM, Altermatt F, Al-Shami SA, Angeler DG, Bonada N, Brand C, Callisto M, Cottenie K, Dangles O, Dudgeon D, Encalada A, Göthe E, Grönroos M, Hamada N, Jacobsen D, Landeiro VL, Ligeiro R, Martins RT, Miserandino ML, Rawi CSM, Rodrigues ME, Roque FO, Sandin L, Schmera D, Sgbari LF, Simaika JP, Siqueira T, Thompson RM, Townsend CR (2015) A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecol Evol 5:1235–1248. doi:10.1002/ece3.1439

    Article  PubMed  PubMed Central  Google Scholar 

  • Holyoak M, Leibold MA, Holt RD (2005) Metacommunities. Spatial dynamics and ecological communities. The University of Chicago Press, Chicago, p 513

    Google Scholar 

  • Jähnig SC, Lorenz AW, Hering D, Antons C, Sundermann A, Jedicke E, Haase P (2011) River restoration success: a question of perception. Ecol Appl 21:2007–2015. doi:10.1890/10-0618.1

    Article  PubMed  Google Scholar 

  • Koordinationsstelle BDM (2014) Biodiversitätsmonitoring Schweiz BDM. Beschreibung der Methoden und Indikatoren. BAFU, Bern

  • Lin G, Stralberg D, Gong G, Huang Z, Ye W, Wu L (2013) Separating the effects of environment and space on tree species distribution: from population to community. PLoS One 8:1–10. doi:10.1371/journal.pone.0056171

    Google Scholar 

  • Maloney KO, Munguia P, Mitchell RM (2011) Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. J N Am Benthol Soc 30:284–295

    Article  Google Scholar 

  • Mari L, Casagrandi R, Bertuzzo E, Rinaldo A, Gatto M (2014) Metapopulation persistence and species spread in river networks. Ecol Lett 14:426–434

    Article  Google Scholar 

  • Miserendino ML (2001) Macroinvertebrate assemblages in Andean Patagonian rivers and streams: environmental relationships. Hydrobiologia 444:147–158. doi:10.1023/A:1017519216789

    Article  Google Scholar 

  • Moore AA, Palmer MA (2005) Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol Appl 15:1169–1177. doi:10.1890/04-1484

    Article  Google Scholar 

  • O’Connor MI, Selig ER, Pinsky M, Altermatt F (2012) Toward a conceptual synthesis for climate change responses. Global Ecol Biogeogr 21:693–703

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria

    Google Scholar 

  • Richards C, Haro RJ, Johnson LB, Host GE (1997) Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshw Biol 37:219–230. doi:10.1046/j.1365-2427.1997.d01-540.x

    Article  Google Scholar 

  • Ripley B (2015) tree: Classification and regression trees. R package version 1.0-36. http://CRAN.R-project.org/package=tree

  • Roy AH, Rosemond AD, Paul MJ, Leigh DS, Wallace JB (2003) Stream macroinvertebrate response to catchment urbanisation (Georgia, U.S.A.). Freshw Biol 48:329–346. doi:10.1046/j.1365-2427.2003.00979.x

    Article  Google Scholar 

  • Sawyer JA, Stewart PM, Mullen MM, Simon TP, Bennett HH (2004) Influence of habitat, water quality, and land use on macro-invertebrate and fish assemblages of a southeastern coastal plain watershed, USA. Aquat Ecosyst Health 7:85–99. doi:10.1080/14634980490281353

    Article  Google Scholar 

  • Seymour M, Fronhofer EA, Altermatt F (2015) Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos 124:908–916

    Article  Google Scholar 

  • Seymour M, Deiner K, Altermatt F (2016) Scale and scope matter when explaining varying patterns of community diversity in riverine metacommunities. Basic Appl Ecol 17:134–144. doi:10.1016/j.baae.2015.10.007

    Article  Google Scholar 

  • Sliva L, Williams DD (2001) Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res 35:3462–3472. doi:10.1016/S0043-1354(01)00062-8

    Article  CAS  PubMed  Google Scholar 

  • Stucki P (2010) Methoden zur Untersuchung und Beurteilung der Fliessgewässer. Makrozoobenthos Stufe F, BAFU, Bern

    Google Scholar 

  • Sundermann A, Stoll S, Haase P (2011) River restoration success depends on the species pool of the immediate surroundings. Ecol Appl 21:1962–1971. doi:10.1890/10-0607.1

    Article  PubMed  Google Scholar 

  • Tachet H (2010) Invertébrés d’eau douce: Systématique, biologie, écologie. CNRS Editions, Paris

  • Team Python (2014) Python software foundation. Beaverton, USA

    Google Scholar 

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101. doi:10.1038/nature09329

    Article  CAS  PubMed  Google Scholar 

  • Tonkin JD (2014) Drivers of macroinvertebrate community structure in unmodified streams. PeerJ 2:e465. doi:10.7717/peerj.465

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonkin JD, Shah DN, Kuemmerlen M, Li F, Cai QH, Haase P, Jähnig SC (2015) Climatic and catchment-scale predictors of Chinese stream insect richness differ between taxonomic groups. PLoS One. doi:10.1371/journal.pone.0123250

    Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi:10.1038/nature09440

    Article  PubMed  Google Scholar 

  • Wahl CM, Neils A, Hooper D (2013) Impacts of land use at the catchment scale constrain the habitat benefits of stream riparian buffers. Freshw Biol 58:2310–2324. doi:10.1111/fwb.12211

    CAS  Google Scholar 

  • Wittmer I, Moschet C, Simovic J, Singer H, Stamm C, Hollender J, Junghans M, Leu C (2014) Über 100 Pestizide in Fliessgewässern—Programm Nawa Spez zeigt die hohe Pestizidbelastung der Schweizer Fliessgewässer auf. Aqua Gas 49:32–43

    Google Scholar 

  • Wrona FJ, Dixon WJ (1991) Group size and predation risk: a field analysis of encounter and dilution effects. Am Nat 137:186–201

    Article  Google Scholar 

  • Zagmajster M, Eme D, Fišer C, Galassi D, Marmonier P, Stoch F, Cornu JF, Malard F (2014) Geographic variation in range size and beta diversity of groundwater crustacean: insights from habitats with low thermal seasonality. Global Ecol Biogeogr 23:1135–1145. doi:10.1111/geb.12200

    Article  Google Scholar 

Download references

Acknowledgments

The Swiss Federal Office for the Environment provided the BDM data. We thank the many people who conducted field and laboratory work within the biodiversity monitoring program and N. Martinez who gave us access to the data. We thank R. Siber for her assistance in acquiring GIS data, C. Stamm and M. Seymour for discussions and R. Masahiro and two anonymous reviewers for comments on the manuscript. Funding was provided by the Swiss National Science Foundation grant PP00P3_150698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Altermatt.

Additional information

Handling Editor: Piet Spaak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaelin, K., Altermatt, F. Landscape-level predictions of diversity in river networks reveal opposing patterns for different groups of macroinvertebrates. Aquat Ecol 50, 283–295 (2016). https://doi.org/10.1007/s10452-016-9576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-016-9576-1

Keywords

Navigation