Skip to main content
Log in

Phytoplankton dynamics in a subtropical lake dominated by cyanobacteria: cyanobacteria ‘Like it Hot’ and sometimes dry

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

An 18-year data set (1993–2010) of water column variables from Lake George, Florida (USA), was used to examine relationships between the phytoplankton community (composition and biomass) and physical variables (temperature and hydrologic discharge rates). Lake George is a large shallow eutrophic lake located in the subtropical environment of north Florida and is subject to frequent and intense blooms of cyanobacteria. Cyanobacteria dominated the phytoplankton community during warmer months of the year (May–September). Other phytoplankton taxa increased their relative contributions to phytoplankton biomass during the colder months (November–March), when cyanobacterial biomass was low. Increased discharge rates during the peak flushing season (September–December) were correlated to diminished cyanobacterial biomass despite elevated nutrient levels. Analysis of time series data revealed higher warm season peaks in cyanobacteria biomass during years of relatively low discharge, whereas other phytoplankton groups showed the opposite trend with peaks during the colder months. These observations indicate a need for lake management strategies that consider both hydrologic and nutrient loadings within the context of possible future changes in temperature and rainfall regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlgren G (1983) Comparison of methods for estimation of phytoplankton carbon. Arch Hydrobiol 98:489–508

    CAS  Google Scholar 

  • Berger SA, Diehl S, Stibor H et al (2007) Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150:643–654. doi:10.1007/s00442-006-0550-9

    Article  PubMed  Google Scholar 

  • Cloern JE, Jassby AD (2010) Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuaries Coasts 33:230–241. doi:10.1007/s12237-009-9195-3

    Article  CAS  Google Scholar 

  • Coveney MF, Hendrickson JC, Marzolf ER et al (2011) The St. Johns River Water Supply Impact Study: chap 8 plankton. St. Johns River Water Management District, Palatka, FL

  • Dong L (2010) Phytoplankton bloom dynamics in a nitrogen-limited subtropical lake. Thesis, University of Florida, Gainesville, Florida, USA

  • Edler L (1979) Recommendations on methods for marine biological studies in the Baltic Sea: phytoplankton and chlorophyll. The Baltic Marine Biologist Publication No. 5, pp 1–38

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multi-decadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080. doi:10.1029/2000GL012745

    Article  Google Scholar 

  • Everitt B, Hothorn T (2011) An introduction to applied multivariate analysis with R, 1st edn. Springer, New York

    Book  Google Scholar 

  • Harley C, Hughes A, Hultgren K et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x

    Article  PubMed  Google Scholar 

  • Havens KE, Beaver JR, Casamatta DA et al (2011) Hurricane effects on the planktonic food web of a large subtropical lake. J Plankton Res 33:1081–1094. doi:10.1093/plankt/fbr002

    Article  Google Scholar 

  • Hendrickson J, Lowe EF, Dobberfuhl D et al (2003) Characteristics of accelerated eutrophication in the lower St. Johns River estuary and recommended targets to achieve water quality goals for the fulfillment of TMDL and PLRG Objectives. St. Johns River Water Management District, Palatka, FL

  • Huisman J, Hulot FD (2005) Population dynamics of harmful cyanobacteria. In: Huisman J, Matthijis HCP, Visser PM (eds) Harmful cyanobacteria, 1st edn. Springer, New York, pp 143–176

    Chapter  Google Scholar 

  • Ibelings BW, Backer LC, Kardinaal WEA et al (2014) Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 40:63–74. doi:10.1016/j.hal.2014.10.002

    Article  CAS  Google Scholar 

  • Johnk KD, Huisman J, Sharples J et al (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biol 14:495–512. doi:10.1111/j.1365-2486.2007.01510.x

    Article  Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, New York

    Google Scholar 

  • Lundgren A (1978) Experimental lake fertilization in the Kuokkel area, northern Sweden: changes in sestonic carbon and the role of phytoplankton. Int Ver Theor Angew Limnol Verh 20:863–868

    Google Scholar 

  • Obeysekera J, Barnes J, Nungesser M (2015) Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change. Environ Manag 55:749–762. doi:10.1007/s00267-014-0315-x

    Article  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA et al (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334. doi:10.1016/j.hal.2011.10.027

    Article  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58. doi:10.1126/science.1155398

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37. doi:10.1111/j.1758-2229.2008.00004.x

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363. doi:10.1016/j.watres.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745. doi:10.1016/j.scitotenv.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Hall NS, Peierls BL et al (2014) Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries Coasts 37:243–258. doi:10.1007/s12237-014-9773-x

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Peeters F, Straile D, Lorke A et al (2007) Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Global Change Biol 13:1898–1909. doi:10.1111/j.1365-2486.2007.01412.x

    Article  Google Scholar 

  • Phlips EJ, Cichra M, Aldridge FJ et al (2000) Light availability and variations in phytoplankton standing crops in a nutrient-rich blackwater river. Limnol Oceanogr 45:916–929

    Article  Google Scholar 

  • Phlips EJ, Hendrickson J, Quinlan EL et al (2007) Meteorological influences on algal bloom potential in a nutrient-rich blackwater river. Freshwat Biol 52:2141–2155. doi:10.1111/j.1365-2427.2007.01844.x

    Article  CAS  Google Scholar 

  • Posch T, Koester O, Salcher MM et al (2012) Harmful filamentous cyanobacteria favored by reduced water turnover with lake warming. Nat Climate Change 2:809–813. doi:10.1038/NCLIMATE1581

    Article  CAS  Google Scholar 

  • Qin B, Zhu G, Gao G et al (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manag 45:105–112. doi:10.1007/s00267-009-9393-6

    Article  Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, New York

    Book  Google Scholar 

  • Rocha O, Duncan A (1985) The relationship between cell carbon and cell-volume in fresh water algal species used in zooplanktonic studies. J Plankton Res 7:279–294. doi:10.1093/plankt/7.2.279

    Article  Google Scholar 

  • Schindler D (2001) The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can J Fish Aquat Sci 58:18–29. doi:10.1139/cjfas-58-1-18

    Article  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems—a global problem. Environ Sci Pollut Res 10:126–139. doi:10.1065/espr2002.12.142

    Article  CAS  Google Scholar 

  • Srifa A (2010) Factors controlling zooplankton dynamics in a subtropical lake during cyanobacterial bloom events. Thesis, University of Florida, Gainesville, Florida, USA

  • Srifa A (2015) Seasonal variations and effects of cyanobacterial blooms on planktonic community structure in a subtropical lake. Dissertation, University of Florida, Gainesville, Florida, USA

  • Taranu ZE, Gregory-Eaves I, Leavitt PR et al (2015) Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol Lett 18:375–384. doi:10.1111/ele.12420

    Article  PubMed  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Climate Res 47:123–138. doi:10.3354/cr00953

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitiven phytoplankton-methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological analyses. Springer Science + Business Media New York, New York

    Book  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW et al (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J (J Sci Hydrol) 54:101–123. doi:10.1623/hysj.54.1.101

    Article  Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favors small-sized planktonic diatom species. Proc R Soc B Biol Sci 276:427–435. doi:10.1098/rspb.2008.1200

    Article  Google Scholar 

  • Zhang M, Duan H, Shi X et al (2012) Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Res 46:442–452. doi:10.1016/j.watres.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  • Zingone A, Phlips EJ, Harrison PJ (2010) Multi-scale variability of twenty-two coastal phytoplankton time series: a global scale comparison. Estuaries Coasts 33:224–229. doi:10.1007/s12237-009-9261-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was in part funded by grants from the St. Johns River Water Management District. We also thank the St. Johns River Water Management District for the extensive field observations and chemistry analyses provided in the long-term data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Phlips.

Additional information

Handling Editor: Bas W. Ibelings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srifa, A., Phlips, E.J., Cichra, M.F. et al. Phytoplankton dynamics in a subtropical lake dominated by cyanobacteria: cyanobacteria ‘Like it Hot’ and sometimes dry. Aquat Ecol 50, 163–174 (2016). https://doi.org/10.1007/s10452-016-9565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-016-9565-4

Keywords

Navigation