Skip to main content

Advertisement

Log in

Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The aim of this paper was to summarize the current knowledge on how physical methods can reduce or control internal P release from sediments in lakes and reservoirs. Particular emphasis is given to the role of internal phosphorus load in fueling cyanobacterial blooms which are predicted to increase in frequency and intensity in response to climate change and eutrophication. We present selective case studies (both successful and unsuccessful) to assess the applicability and efficiency of major physical approaches used for decades to reduce internal loading in different systems of various morphology. In particular, we concentrate on where and when (1) hypolimnetic aeration/oxygenation, (2) hypolimnetic withdrawal and (3) sediment dredging are likely to reduce cyanobacterial blooms and whether these methods have an adverse impact on other organisms. We conclude that each method has its strength and weakness depending on the system considered. Sufficient knowledge of all lake nutrient sources and their dynamics together with detailed lake and sediment characteristics is an essential prerequisite for choosing an appropriate control method. We also report that many experiences demonstrated that a combination of restoration methods is often more successful than a single method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashley KI (1985) Hypolimnetic aeration: practical design and application. Water Res 19:735–740

    Article  Google Scholar 

  • Beutel MW, Horne AJ (1999) A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality. Lake Reserv Manag 15:285–297

    Article  CAS  Google Scholar 

  • Bjork S, Pokorny J, Hauser V (2010) Restoration of lakes through sediment removal, with case studies from lakes Trummen, Sweden and Vajgar, Czech Republic. In: Eiseltova M (ed) Restoration of lakes, streams, floodplains, and bogs in Europe: principles and case studies. Springer Publishing, pp 101–122

  • Bolam SG, Barry J, Bolam T, Mason C, Rumney HS, Thain JE, Law RJ (2011) Impacts of maintenance dredged material disposal on macrobenthic structure and secondary productivity. Mar Pollut Bull 62(10):2230–2245

    Article  CAS  PubMed  Google Scholar 

  • Bormans M, Condie S (1998) Modelling the distribution of Anabaena and Melosira in a stratified river weir pool. Hydrobiologia 364:3–13

    Article  Google Scholar 

  • Bormans M, Ford PW, Fabbro L, Hancock G (2004) Onset and persistence of cyanobacterial blooms in a large impounded tropical river, Australia. Mar Fresh Res 55:1–15

    Article  CAS  Google Scholar 

  • Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170:229–244

    Article  Google Scholar 

  • Burgi H, Stadelman P (2002) Change of phytoplankton composition and biodiversity in Lake Sempach before and during restoration. Hydrobiologia 469:33–48

    Article  Google Scholar 

  • Burton GA, Johnston EL (2010) Assessing contaminated sediments in the context of multiple stressors. Environ Toxicol Chem 29(12):2625–2643

    Article  CAS  PubMed  Google Scholar 

  • Callieri C, Bertoni R, Contesini M, Bertoni F (2014) Water level fluctuations boost toxic cyanobacterial “oligotrophic blooms”. PLos One 9(10):e109529

    Article  Google Scholar 

  • Chorus I, Mur LE (1999) Preventive measures. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN SPON, London and New York, pp 235–273

    Chapter  Google Scholar 

  • Chorus I, Schauser I (2011) Oligotrophication of lake Tegel and Schlachtensee, Berlin—analysis of system components, causalities and response thresholds compared to responses of other waterbodies. Technical report (45/2011) of the Federal Environment Agency (Umweltbundesamt)

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  CAS  PubMed  Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Nichols SA (2005) In: Cooke GD (ed) Restoration and management of lakes and reservoirs, 3rd edn. Taylor and Francis, Boca Raton, Florida

    Google Scholar 

  • Cooper KM, Curtis M, Hussin WMRW, Frojan CRSB, Defew EC, Nye V, Paterson DM (2011) Implications of dredging induced changes in sediment particle size composition for the structure and function of marine benthic macrofaunal communities. Mar Pollut Bull 62(10):2087–2094

    Article  CAS  PubMed  Google Scholar 

  • Cox P, Fisher I, Kastl G, Jegatheesan V, Warnecke M, Angles M, Bustamante H, Chiffins T, Hawkins P (2003) Sydney 1998—lessons from a drinking water crisis. J Am Water Works Assoc 95(5):147–161

    CAS  Google Scholar 

  • Dunalska J, Wisniewski G, Mientki C (2007) Assessment of multiyear (1956–2003) hypolimnetic withdrawal from Lake Kortowskie, Poland. Lake Res Manag 23:377–387

    Article  Google Scholar 

  • Effler SW, Perkins MG, Brooks CM (1986) The oxygen resources of the hypolimnion of ionically enriched Onondaga Lake, NY, USA. Water Air Soil Pollut 29:93–108

    Article  CAS  Google Scholar 

  • Eiseltova M (ed) (1994) Restoration of lake ecosystems—a holistic approach, vol 32. International Waterfowl and Wetlands Research Bureau, Slimbridge, Gloucester, UK

    Google Scholar 

  • Gächter VR (1976) Die Tiefenwasserableitung, ein Weg zur Sanierung von Seen. Swiss J Hydrol 38:1–29

    Google Scholar 

  • Gächter R, Müller B (2003) Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface? Limnol Oceanogr 48:929–933

    Article  Google Scholar 

  • Garcia-Orellana J, Canas L, Masque P, Obrador B, Olid C, Pretus J (2011) Chronological reconstruction of metal contamination in the Port of Mao (Minorca, Spain). Mar Pollut Bull 62(8):1632–1640

    Article  CAS  PubMed  Google Scholar 

  • Hickey CW, Gibbs MM (2009) Lake sediment phosphorus release management—decision support and risk assessment framework. NZ J Mar Freshw Res 43:819–856

    Article  CAS  Google Scholar 

  • Huisman J, Van Oostveen P, Weissing FJ (1999) Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am Nat 154:46–68

    Article  Google Scholar 

  • Ibelings BW, Portielje R, Lammens EH, Noordhuis R, van den Berg MS, Joosse W, Meijer ML (2007) Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10:4–16

    Article  CAS  Google Scholar 

  • Istvánovics V, Somlyódy L, Clement A (2002) Cyanobacteria-mediated internal eutrophication in shallow Lake Balaton after load reduction. Water Res 36:3314–3322

    Article  PubMed  Google Scholar 

  • Jeppesen E, Søndergaard M, Meerhoff M, Lauridsen TL, Jensen JP (2007) Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 584:239–252

    Article  CAS  Google Scholar 

  • Jiang X, Jin X, Yao Y, Li L, Wu F (2008) Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Res 42:2251–2259

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RH (1999) Reservoir design and operation: limnological implications and management opportunities. In: Tundishi JG, Straskraba M (eds) Theoretical reservoir ecology and its applications. Backhuys Publishers, The Netherlands, pp 1–28

    Google Scholar 

  • Keto A, Lehtinen A, Makela A, Sammalkorpi I (2004) Lake restoration. In: Eloranta P (ed) Inland and coastal waters of Finland. Palmenia Publishing, University of Helsinki

  • Kleeberg A, Kohl JG (1999) Assessment of the long-term effectiveness of sediment dredging to reduce benthic phosphorus release in shallow Lake Muggelsee (Germany). Hydrobiologia 394:153–161

    Article  CAS  Google Scholar 

  • Kortmann RW, Knoecklein GW, Bonnell CH (1994) Aeration of stratified lakes: theory and practice. Lake Reserv Manag 8:99–120

    Article  Google Scholar 

  • Lehman EM, McDonald KE, Lehman JT (2009) Whole lake selective withdrawal experiment to control harmful cyanobacteria in an urban impoundment. Water Res 43:1187–1198

    Article  CAS  PubMed  Google Scholar 

  • Lewis MA, Weber DE, Stanley RS, Moore JC (2001) Dredging impact on an urbanized Florida bayou: effects on benthos and algal-periphyton. Environ Pollut 115:161–171

    Article  CAS  PubMed  Google Scholar 

  • Lindenschmidt KE, Chorus I (1997) The effect of aeration on stratification and phytoplankton populations in Lake Tegel, Berlin. Arch Hydrobiol 139:317–346

    Google Scholar 

  • Lindenschmidt KE, Hamblin PF (1997) Hypolimnetic aeration in Lake Tegel, Berlin. Water Res 31:1619–1628

    Article  CAS  Google Scholar 

  • Little JC (1995) Hypolimnetic aerators: predicting oxygen transfer and hydrodynamics. Water Res 29:2475–2482

    Article  CAS  Google Scholar 

  • Lorenzen MW, Fast AW (1977) A guide to aeration/circulation techniques for lake management. Ecol Res Ser EPA-600/3-77-004, US Environmental Protection Agency

  • Lurling M, Faassen EJ (2012) Controlling toxic cyanobacteria: effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water Res 46(5):1447–1459

    Article  PubMed  Google Scholar 

  • MacIntyre S, Flynn KM, Jellison R, Romero JR (1999) Boundary mixing and nutrient flux in Mono Lake, California. Limnol Oceanogr 44:512–529

    Article  CAS  Google Scholar 

  • Manning PG, Murphy TP, Prepas EE (1994) Forms of iron and the bioavailability of phosphorus in eutrophic Amisk Lake. Can Mineral 32:459–468

    CAS  Google Scholar 

  • Mantzouki E, Visser PM, Bormans M, Ibelings BW (2016) Understanding the key ecological traits of cyanobacteria as a basis for their management and control under expected environmental changes. Aquat Ecol. doi:10.1007/s10452-015-9526-3

    Google Scholar 

  • Martinez A, Hornbuckle KC (2011) Record of PCB congeners, sorbents and potential toxicity in core samples in India Harbor and Ship Canal. Chemosphere 85(3):542–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McComas S (2002) Lake and pond management guidebook. Lewis Publishers, Boca Raton, Florida

    Google Scholar 

  • Moore BC, Christensen D (2009) Newman Lake restoration—a case study. Part I. Chemical and biological responses to phosphorus control. Lake Reserv Manag 25(4):337–350

    Article  Google Scholar 

  • Moore BC, Cross BK, Beutel M, Dent S, Preece E, Swanson M (2012) Newman Lake restoration: a case study Part III: hypolimnetic oxygenation. Lake Reserv Manag 28(4):311–327

    Article  CAS  Google Scholar 

  • Moss B, Stansfield J, Irvine K, Perrow M, Phillips G (1996) Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. J Appl Ecol 33(1):71–86

    Article  Google Scholar 

  • Nürnberg GK (2007) Lake responses to long term hypolimnetic treatments. Lake Reserv Manag 24:388–409

    Article  Google Scholar 

  • Nürnberg GK (2009) Assessing internal phosphorus load—problems to be solved. Lake Reserv Manag 25:419–432

    Article  Google Scholar 

  • Nürnberg GK, Hartley R, Davis E (1987) Hypolimnetic withdrawal in two North American lakes with anoxic phosphorus release from the sediment. Water Res 21(8):923–928

    Article  Google Scholar 

  • Nürnberg GK, LaZerte BD, Olding DD (2003) An artificially induced Planktothrix rubescens surface bloom in a small kettle lake in southern Ontario compared to blooms world-wide. Lake Reserv Manag 19:307–322

    Article  Google Scholar 

  • Nürnberg GK, Tarvainen M, Ventela A-M, Sarvala J (2012) Internal phosphorus load estimation during biomanipulation in a large polymictic and mesotrophic lake. Inland Waters 2(3):147–162

    Article  Google Scholar 

  • O’Neil JM, Davis TW, Burdford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  Google Scholar 

  • Paerl HW, Xu H, Hall NS, Rossignol KL, Joyner AR, Guangwei Z, Boqiang Q (2015) Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. J Freshw Ecol 30(1):5–24

    Article  CAS  Google Scholar 

  • Pannard A, Bormans M, Lagadeuc Y (2007) Short term variability in physical forcing in temperate reservoirs: effects on phytoplankton dynamics and sedimentary fluxes. Freshw Biol 52:12–27

    Article  CAS  Google Scholar 

  • Pannard A, Beisner BE, Bird DF, Braun J, Planas D, Bormans M (2011) Recurrent internal waves in a small lake: potential ecological consequences for metalimnetic phytoplankton populations. Limnol Oceanogr Fluids Environ 1:91–109

    Article  Google Scholar 

  • Pearl H, Huisman J (2008) Climate: blooms like it hot. Science 320:57–58

    Article  Google Scholar 

  • Pearl H, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic induced change. Sci Tot Environ 409:1739–1745

    Article  Google Scholar 

  • Peterson SA (1981) Sediment removal as lake restoration technique. EPA report-600/3-81-016, US Environmental Protection Agency

  • Pettersson K, George G, Noges P, Noges T, Blenckner T (2010) The impact of the changing climate on the supply and recycling of phosphorus. In: George DG (ed) The impact of climate change on European lakes, Aquatic Ecology Series, vol 4. Springer Publishing

  • Phlips EJ, Cichra M, Havens K, Hanton C, Badylak S, Rueter B, Randall M, Hansen P (1997) Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow sub-tropical lake. J Plankton Res 19(3):319–342

    Article  Google Scholar 

  • Pokorny J, Hauser V (2002) The restoration of fish ponds in agricultural landscapes. Ecol Eng 18(5):555–574

    Article  Google Scholar 

  • Prepas EE, Burke JM (1997) Effects of hypolimnetic oxygenation on water quality in Amisk Lake, Alberta, a deep eutrophic lake with high internal phosphorus loading rates. Can J Fish Aquat Sci 54:2111–2120

    Article  CAS  Google Scholar 

  • Pu PM, Hu WP, Yan JS, Wang GX, Hu CH (1998) A physico-ecological engineering experiment for water treatment in a hypertrophic lake in China. Ecol Eng 10:179–190

    Article  Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Rieberger K (1992) Metal concentrations in fish tissue from uncontaminated B.C. lakes. Water Quality Section, Water Quality Branch, Province of British Columbia, Victoria, B.C

    Google Scholar 

  • Rigosi A, Carey CC, Ibelings BW, Brookes JD (2014) The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59(1):99–114

    Article  Google Scholar 

  • Roberts DA (2012) Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environ Int 40:230–243

    Article  CAS  PubMed  Google Scholar 

  • Sagrario G, María A, Jeppesen E, Goma J, Søndergaard M, Lauridsen T, Landkildehus F (2005) Does nitrogen loading prevents clearer water conditions in shallow lakes at intermediate high phosphorus conditions? Fresh Biol 50:27–41

    Article  Google Scholar 

  • Schauser I, Chorus I (2007) Assessment of internal and external lake restoration measures for two Berlin lakes. Lake Reserv Manag 23:366–376

    Article  Google Scholar 

  • Schauser I, Chorus I (2009) Water and phosphorus mass balance of Lake Tegel and Schachtensee—a modeling approach. Water Res 43:1788–1800

    Article  CAS  PubMed  Google Scholar 

  • Schauser I, Lewandowski J, Hupfer M (2003) Decision support for the selection of an appropriate in-lake measure to influence the phosphorus retention in sediments. Water Res 37:801–812

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Rinaldi S, Gragnani A, Mur LR, vanNes EH (1997) On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:272–282

    Article  Google Scholar 

  • Sherman B, Whittington J, Oliver R (2000) The impact of artificial destratification on water quality in Chaffey Reservoir. Arch Hydrobiol Spec Issue Adv Limnol 55:15–29

    CAS  Google Scholar 

  • Sherman B, Ford P, Hatton P, Whittington J, Green D, Baldwin D, Oliver R, Shiel R, Van Berkel J, Beckett R, Grey L, Maher B (2001) In: Sherman B (ed) The Chaffey Dam story, CSIRO Land & Water. Final report for the CRCFE

  • Singleton VL, Little JC (2006) Designing hypolimnetic aeration and oxygenation systems—a review. Environ Sci Technol 40:7512–7520

    Article  CAS  PubMed  Google Scholar 

  • Soltero RA, Sexton LM, Ashley KI, McKee KO (1994) Partial and full lift hypolimnetic aeration of medical lake, WA to improve water quality. Water Res 28:2297–2308

    Article  CAS  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2001) Retention and internal loading of phosphorus in shallow eutrophic lakes. Sci World 1:427–442

    Article  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509:135–145

    Article  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2005) Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshw Biol 50:1605–1615

    Article  Google Scholar 

  • Soranno PA, Carpenter SR, Lathrop RC (1997) Internal phosphorus loading in Lake Mendota: response to external loads and weather. Can J Fish Aquat Sci 54:1883–1893

    Article  CAS  Google Scholar 

  • Steinman A, Chu X, Ogdahl M (2009) Spatial and temporal variability of internal and external phosphorus loads in Mona Lake, Michigan. Aquat Ecol 43:1–18

    Article  CAS  Google Scholar 

  • Toffolon M, Ragazzi M, Righetti M, Teodoru CR, Tubino M, Defrancesco C, Pozzi S (2013) Effects of artificial hypolimnetic oxygenation in a shallow lake. Part 1: phenomenological description and management. J Envir Manage 114:520–529

    Article  CAS  Google Scholar 

  • Van der Does J, Verstraelen P, Boers P, Vanroestel J, Roijackers R, Moser G (1992) Lake restoration with and without dredging of phosphorus-enriched upper sediment layers. Hydrobiologia 233(1–3):197–210

    Article  Google Scholar 

  • Visser PM, Ibelings BW, Bormans M, Huisman J (2016) Artificial mixing to control cyanobacterial blooms: a review. Aquat Ecol. doi:10.1007/s10452-015-9537-0

  • Vollenweider RA (1975) Input–output models with special reference to the phosphorus loading concept in limnology. Schweiz Z Hydrol 37:53–84

    CAS  Google Scholar 

  • Vrhovsek D, Kosi G, Kralj M, Bricelj M, Zupan M (1985) The effect of lake restoration measures on the physical, chemical and phytoplankton variables of Lake Bled. Hydrobiologia 127:219–228

    Article  Google Scholar 

  • Webb DJ, Roberts RD, Prepas EE (1997) Influence of extended water column mixing during the first two years of hypolimnetic oxygenation on the phytoplankton community of Amisk Lake, Alberta. Can J Fish Aquat Sci 54:2133–2145

    Article  Google Scholar 

  • Weston DP, Jarman WM, Cabana G, Bacon CE, Jacobson LA (2002) An evaluation of the success of dredging as remediation at a DDT-contaminated site in San Francisco Bay, California, USA. Environ Toxicol Chem 21(10):2216–2224

    Article  CAS  PubMed  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Zhong J, You B, Fan C, Li B, Zhang L, Ding S (2008) Influence of sediment dredging on chemical forms and release of phosphorus. Pedosphere 18(1):34–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Caroline Klavins for contributing to the literature search as part of her Master’s project in Hydro3 at the University of Rennes 1. This review contributes to a special issue on “Cyanobacterial blooms: ecology, prevention, mitigation and control” which has been initiated by the EU-CYANOCOST action ES1105. Part of this study was supported as a long-term research development project No. RVO 67985939 (Institute of Botany of the ASCR). We are grateful to the reviewers and the editor whose comments have contributed to significantly improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Bormans.

Additional information

Guest editors: Petra M. Visser, Bas W. Ibelings, Jutta Fastner & Myriam Bormans/Cyanobacterial blooms. Ecology, prevention, mitigation and control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bormans, M., Maršálek, B. & Jančula, D. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review. Aquat Ecol 50, 407–422 (2016). https://doi.org/10.1007/s10452-015-9564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-015-9564-x

Keywords

Navigation