Skip to main content
Log in

Spatio-temporal pattern of the Chironomidae community: toward the use of non-biting midges in bioassessment programs

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We employed the self-organizing map (SOM) method to investigate the spatio-temporal pattern of the Chironomidae community in the Southern Morava River basin (Serbia) and to examine to what extent the Chironomidae community is affected by environmental factors. Additionally, this study explores the problems of utilizing chironomids in bioassessment programs. The SOM analysis of the chironomid community data produced 3 groups of sites. The indicator species analysis presented indicator taxa for two groups. Twenty taxa (at species, species group and genus level), according to the Kruskal–Wallis test, showed the most pronounced differences among the temporal units. Out of 15 measured environmental parameters, one-way ANOVA pointed out that 10 significantly differ between the groups. Elevation had the most important influence on the chironomid community, also affecting other environmental parameters. According to our findings, the winter season and the periods with high water level are the main sources of natural variability. To avoid such variability and to successfully incorporate Chironomidae in bioassessment programs, we suggest exclusion of the arguable months from monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA (1999) Standard methods for the Examination of water and wastewater. 9th American Public Helth Association, Washington

  • AQEM (2002) Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Contract No: EVK1-CT1999-00027)

  • Armitage PD, Moss D, Wright JF, Furse MT (1983) The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res 17:333–347. doi:10.1016/0043-1354(83)90188-4

    Article  CAS  Google Scholar 

  • Armitage PD, Cranston P, Pinder LCV (1995) The Chironomidae: biology and ecology of non-biting midges. Chapman and Hall, London

    Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, bentic macroinvertebrates and fish, 2nd edn. EPA 841-b-99-002. US Environmental Protection Agency, Office of Water, Washington, DC

  • Bazzanti M (2000) Ecological requirements of chironomids (Diptera: chironomidae) on the soft bottom of the river Arrone, Central Italy. J Freshw Ecol 15:397–409. doi:10.1080/02705060.2000.9663758

    Article  Google Scholar 

  • Brabec K, Janecek BFU, Rossaro B, Spies M, Bitusik P, Syrovatka V, Schmidt-Kloiber A (2007) Chironomidae indicator database. Euro-limpacs project, workpackage 7—indicators of ecosystem health, task 4. www.freshwaterecology.info. Version 5.0

  • Calle-Martínez D, Casas JJ (2006) Chironomid species, stream classification, and water-quality assessment: the case of 2 Iberian Mediterranean mountain regions. J North Am Benthol Soc 25:465–476. doi:10.1899/0887-3593(2006)25[465:CSSCAW]2.0.CO;2

    Article  Google Scholar 

  • Casas J, Vilchez-Quero A (1993) Altitudinal distribution of lotic chironomid (Diptera) communities in the Sierra Nevada mountains (Southern Spain). Ann Limnol 29:175–185. doi:10.1051/limn/1993016

    Article  Google Scholar 

  • Céréghino R, Park YS (2009) Review of the Self-Organizing Map (SOM) approach in water resources: commentary. Environ Modell Softw 24:945–947. doi:10.1016/j.envsoft.2009.01.008

    Article  Google Scholar 

  • Chon TS (2011) Self-organizing maps applied to ecological sciences. Ecol Inform 6:50–61. doi:10.1016/j.ecoinf.2010.11.002

    Article  Google Scholar 

  • Chon TS, Park YS, Moon KH, Cha EY (1996) Patternizing communities by using an artificial neural network. Ecol Model 90:69–78. doi:10.1016/0304-3800(95)00148-4

    Article  Google Scholar 

  • Chon TS, Park YS, Park JH (2000) Determining temporal pattern of community dynamics by using unsupervised learning algorithms. Ecol Model 132:151–166. doi:10.1016/S0304-3800(00)00312-4

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Coffman WP (1995) Conclusions. In: Armitage PD, Cranston PJ, Pinder LCV (eds) The chironomidae: biology and ecology of non-biting midges. Chapman and Hall, London, pp 436–447

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • De Bisthoven LJ, Gerhardt A, Soares AMVM (2005) Chironomidae larvae as bioindicators of an acid mine drainage in Portugal. Hydrobiologia 532:181–191. doi:10.1007/s10750-004-1387-z

    Article  Google Scholar 

  • De Pauw N, Vanhooren G (1983) Method for biological quality assessment of watercourses in Belgium. Hydrobiologia 100:153–168. doi:10.1007/BF00027428

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Google Scholar 

  • Edwards DHD, Storey AW, Smith MJB (2000) Assessing the river health in south-western Australia: comparison of macroinvertebrates at family level with Chironomidae at species level. Verh Int Ver Theor Angew Limnol 27:2326–2335

    Google Scholar 

  • Ferrington LC (2008) Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595:447–455. doi:10.1007/s10750-007-9130-1

    Article  Google Scholar 

  • Ferrington LC, Buzby K, Masteller E (1993) Composition and temporal abundance of Chironomidae emergence from a tropical rainforest stream at El Verde, Puerto Rico. J Kans Entomol Soc 66:167–180

    Google Scholar 

  • Furse M, Moss D, Wright J, Armitage P (1984) The influence of seasonal and taxonomic factors on the ordination and classification of running-water sites in Great Britain and on the prediction of their macro-invertebrate communities. Freshw Biol 14:257–280. doi:10.1111/j.1365-2427.1984.tb00040.x

    Article  Google Scholar 

  • Gabriels W, Lock K, De Pauw N, Goethals PLM (2010) Multimetric Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnologica 40:199–207. doi:10.1016/j.limno.2009.10.001

    Article  Google Scholar 

  • García PE, Añón Suárez DA (2007) Community structure and phenology of chironomids (Insecta: Chironomidae) in a Patagonian Andean stream. Limnologica 37:109–117. doi:10.1016/j.limno.2006.09.005

    Article  Google Scholar 

  • García X, Laville H (2000) First inventory and faunistic particularities of the chironomid population from a 6th order section of the sandy River Loire (France). Arch Hydrobiol 147:465–484

    Google Scholar 

  • Gavrilović L, Dukić D (2002) Rivers of Serbia. Bureau of textbooks, Belgrade [in Serbian: Reke Srbije]

  • Grzybkowska M, Temech A, Dukowska M (1996) Impact of long-term alternations of discharge and spate on the chironomid community in the lowland Widawka River (Central Poland). Hydrobiologia 324:107–115. doi:10.1007/BF00018171

    Article  Google Scholar 

  • Helson JE, Williams DD, Turner D (2006) Larval chironomid community organization in four tropical rivers: human impacts and longitudinal zonation. Hydrobiologia 559:413–431. doi:10.1007/s10750-005-0977-8

    Article  Google Scholar 

  • Hering D, Moog O, Sandin L, Verdonschot PFM (2004) Overview and application of the AQEM assessment system. Hydrobiologia 516:1–20. doi:10.1007/978-94-007-0993-5_1

    Article  Google Scholar 

  • Hilsenhoff WL (1982) Using a biotic index to evaluate water quality in streams. Wisconsin Department of natural resources, Technical bulletin no. 132, Madison

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, New Jersey

    Google Scholar 

  • Janssens De Bisthoven L, Gerhardt A (2003) Chironomidae (Diptera, Nematocera) fauna in three small streams of Skania, Sweden. Environ Monit Assess 83:89–102. doi:10.1023/A:1022494222666

    Article  PubMed  CAS  Google Scholar 

  • Kerans B, Karr JR (1994) A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol Appl 4:768–785. doi:10.2307/1942007

    Article  Google Scholar 

  • King RS, Richardson CJ (2002) Evaluating subsampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. J North Am Benthol Soc 21:150–171. doi:10.2307/1468306

    Article  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69. doi:10.1007/BF00337288

    Article  Google Scholar 

  • Koperski P (2009) Reduced diversity and stability of chironomid assemblages (Chironomidae, Diptera) as the effect of moderate stream degradation. Pol J Ecol 57:125–138

    Google Scholar 

  • Langton PH, Casas J (1998) Changes in chironomid assemblage composition in two Mediterranean mountain streams over a period of extreme hydrological conditions. Hydrobiologia 390:37–49. doi:10.1023/A:1003589216389

    Article  Google Scholar 

  • Lenat DR (1983) Chironomid taxa richness: natural variation and use in pollution assessment. Freshw Invertebr Biol 2:192–198

    Article  Google Scholar 

  • Lencioni V, Rossaro B (2005) Microdistribution of chironomids (Diptera: Chironomidae) in Alpine streams: an autoecological perspective. Hydrobiologia 533:61–76. doi:10.1007/s10750-004-2393-x

    Article  Google Scholar 

  • Lencioni V, Maiolini B, Marziali L, Lek S, Rossaro B (2007) Macroinvertebrate assemblages in glacial stream systems: a comparison of linear multivariate methods with artificial neural networks. Ecol Model 203:119–131. doi:10.1016/j.ecolmodel.2006.04.028

    Article  Google Scholar 

  • Lindegaard C, Brodersen K (1995) Distribution of Chironomidae (Diptera) in the river continuum. In: Cranston P (ed) Chironomids: from genes to ecosystems. CSIRO, Melbourne, pp 257–271

    Google Scholar 

  • Lobinske RJ, Ali A, Stout IJ (1996) Qualitative and quantitative studies on Chironomidae (Diptera) and selected physico-chemical parameters in two tributaries of the Wekiva River, central Florida. Fla Entomol 79:531–542

    Article  Google Scholar 

  • Marziali L, Armanini DG, Cazzola M, Erba S, Toppi E, Buffagni A, Rossaro B (2010) Responses of Chironomid larvae (Insecta, Diptera) to ecological quality in Mediterranean river mesohabitats (South Italy). River Res Appl 26:1036–1051. doi:10.1002/rra.1303

    Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD: Multivariate analysis of ecological data; version 4 for windows [user’s guide]. MjM Software Design

  • Metcalfe JL (1989) Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Environ Pollut 60:101–139. doi:10.1016/0269-7491(89)90223-6

    Article  PubMed  CAS  Google Scholar 

  • Milošević D, Simić V, Stojković M, Živić I (2012) Chironomid faunal composition represented by taxonomic distinctness index reveals environmental change in a lotic system over three decades. Hydrobiologia 683:62–82. doi:10.1007/s10750-011-0941-8

    Google Scholar 

  • Moller Pillot H (1984a) De larven der Nederlandse Chironomiae (Diptera). 1A: Inleiding, Tanypodinae en Chironomini. St. E.I.S Nederland, Leiden

  • Moller Pillot H (1984b) De larven der Nederlandse Chironomiae (Diptera). 1B: Orthocladiinae sensu lato. St. E.I.S Nederland, Leiden

  • Moller Pillot H (2009) Chironomidae larvae. Biology and ecology of the Chironomini. KNNV Publishing, Zeist

    Google Scholar 

  • Nijboer R, Park Y, Lek S, Verdonschot P (2005) Comparison of clustering and ordination methods implemented to the full and partial data of benthic macroinvertebrate communities in streams and channels. In: Nijboer R (ed) The myth of communities: determining ecological quality of surface waters using macroinvertebrate community patterns. Wageningen, Alteterra, pp 105–136

    Google Scholar 

  • Orendt C (2002) The chironomid community of the River Inn near Mühldorf (Upper Bavaria, Germany). Lauterbornia 44:109–120

    Google Scholar 

  • Orendt C, Spies M (2012) Chironomini (Diptera: Chironomidae: Chironominae). Keys to Central European larvae using mainly macroscopic characters. Second revised edition, Leipzig

  • Paasavirta L (1990) The macrozoobenthos studies in the upper part of the Vanajavesi catchment area in the years of 1985 and 1988 with a comparison to earlier data. Ass Wat Poll Control (The Kokemaenjoki river) 225:1–24

    Google Scholar 

  • Park YS, Céréghino R, Compin A, Lek S (2003) Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol Model 160:265–280. doi:10.1016/S0304-3800(02)00258-2

    Article  Google Scholar 

  • Park YS, Chon TS, Kwak IS, Lek S (2004) Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Sci Total Environ 327:105–122. doi:10.1016/j.scitotenv.2004.01.014

    Article  PubMed  CAS  Google Scholar 

  • Paunović M, Simić V, Simić S, Vuković D, Petrović A, Vasiljević B, Zorić K, Tomović J, Atanacković A, Marković V (2011) Biological Quality Elements in WFD implementation in Serbia—typology, reference conditions and ecological status class boundaries. Technical Report, Contracts No. 01-772. Institute for Biological Research “Siniša Stanković”, Beograd

  • Paunović M, Tubić B, Kračun M, Marković V, Simić V, Zorić K, Atanacković A (2012) Ecoregions delineation for the territory of Serbia. Water Res Manag 2:65–74

    Google Scholar 

  • Penczak T (2009) Fish assemblage compositions after implementation of the IndVal method on the Narew River system. Ecol Model 220:419–423. doi:10.1016/j.ecolmodel.2008.11.005

    Article  Google Scholar 

  • Penczak T, Kruk A, Grzybkowska M, Dukowska M (2006) Patterning of impoundment impact on chironomid assemblages and their environment with use of the self-organizing map (SOM). Acta Oecol 30:312–321. doi:10.1016/j.actao.2006.05.007

    Article  Google Scholar 

  • Penczak T, Głowacki Ł, Kruk A, Galicka W (2012) Implementation of a self-organizing map for investigation of impoundment impact on fish assemblages in a large, lowland river: long-term study. Ecol Model 227:64–71. doi:10.1016/j.ecolmodel.2011.12.006

    Article  Google Scholar 

  • Pinder LCV (1995) The habitats of chironomid larvae. In: Armitage PD, Cranston PS, Pinder LCV (eds) The Chironomidae: Biology and ecology of non-biting midges. Chapman and Hall, New York, pp 107–135

    Google Scholar 

  • Puntí T, Rieradevall M, Prat N (2009) Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. J North Am Benthol Soc 28:247–265. doi:10.1899/07-172.1

    Article  Google Scholar 

  • Rabeni CF, Wang N (2001) Bioassessment of streams using macroinvertebrates: are the chironomidae necessary? Environ Monit Assess 71:177–185. doi:10.1023/A:1017523115381

    Article  PubMed  CAS  Google Scholar 

  • Raunio J, Muotka T (2005) Use of chironomid pupal exuviae in river biomonitoring: the importance of sampling strategy. Arch Hydrobiol 164:529–545. doi:10.1127/0003-9136/2005/0164-0529

    Article  CAS  Google Scholar 

  • Raunio J, Heino J, Paasivirta L (2011) Non-biting midges in biodiversity conservation and environmental assessment: findings from boreal freshwater ecosystems. Ecol Indic 11:1057–1064. doi:10.1016/j.ecolind.2010.12.002

    Article  Google Scholar 

  • Rosenberg DM (1993) Freshwater biomonitoring and Chironomidae. Aquat Ecol 26:101–122. doi:10.1007/BF02255231

    Google Scholar 

  • Rossaro B (1991) Chironomids and water temperature. Aquat Insects 13:87–98. doi:10.1080/01650429109361428

    Article  Google Scholar 

  • Rossaro B, Lencioni V, Boggero A, Marziali L (2006) Chironomids from Southern Alpine running waters: ecology, biogeography. Hydrobiologia 562:231–246. doi:10.1007/s10750-005-1813-x

    Article  Google Scholar 

  • Schmid P (1992) Community structure of larval Chironomidae (Diptera) in a backwater area of the River Danube. Freshw Biol 27:151–167. doi:10.1111/j.1365-2427.1992.tb00530.x

    Article  Google Scholar 

  • Schmid P (1993) A key to the larval Chironomidae and their instars from Austrian Danube Region streams and rivers: part 1. Diamesinae, Prodiamesinae and Orthocladiinae. Federal Institute for Water Quality of the Ministry of Agriculture and Forestry, Wien

  • Spies M, Sæther OA (2004) Notes and recommendations on taxonomy and nomenclature of Chironomidae (Diptera). Zootaxa 752:1–90

    Google Scholar 

  • Šporka F, Vlek HE, Bulánková E, Krno I (2006) Influence of seasonal variation on bioassessment of streams using macroinvertebrates. Hydrobiologia 566:543–555. doi:10.1007/s10750-006-0073-8

    Article  Google Scholar 

  • Tang H, Song MY, Cho WS, Park YS, Chon TS (2010) Species abundance distribution of benthic chironomids and other macroinvertebrates across different levels of pollution in streams. Ann Limnol 46:53–66. doi:10.1051/limn/2009031

    Article  Google Scholar 

  • Vallenduuk HJ, Moller Pillot H (2007) Chironomidae larvae of the Netherlands and Adjacent Lowlands: General ecology and Tanypodinae. KNNV Publishing, Zeist

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Verdonschot PFM (1990) Ecological characterization of surface waters in the province of Overijssel (The Netherlands). Phd thesis, University of Wageningen

  • Verdonschot PFM (2005) Macroinvertebrate community assemblages. Introduction. In: Lek S, Scardi M, Verdonschot PFM, Descy JP, Park YS (eds) Modelling community structure in freshwater ecosystems. Springer, Berlin, pp 131–132

    Google Scholar 

  • Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) Som toolbox for matlab 5. Technical Report A57. Neural Network Research Centre, Helsinki University of Technology, Helsinki

  • Waite IR, Herlihy AT, Larsen DP, Urquhart NS, Klemm DJ (2004) The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: an example from the Mid-Atlantic Highlands, USA. Freshw Biol 49:474–489. doi:10.1111/j.1365-2427.2004.01197.x

    Article  Google Scholar 

  • Ward AF, Williams DD (1986) Longitudinal zonation and food of larval chironomids (Insecta: Diptera) along the course of a river in temperate Canada. Ecography 9:48–57. doi:10.1111/j.1600-0587.1986.tb01190.x

    Article  Google Scholar 

  • Wiederholm T (1983) Chironomidae of the Holarctic region: keys and diagnoses. Publishing House of the Swedish Research Councils, Stockholm

    Google Scholar 

  • Wilson R (1992) Monitoring organic enrichment of rivers using chironomid pupal exuvial assemblages. Aquat Ecol 26:521–525. doi:10.1007/BF02255285

    Article  Google Scholar 

  • Wright JF, Furse MT, Mielke PW (1998) River classification using invertebrates: RIVPACS application. Aquat Conserv Mar Freshw Ecosyst 8:617–631. doi:10.1002/(SICI)1099-0755(199807/08)8:4<617::AID-AQC255>3.0.CO;2-#

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants #043002 (‘‘Biosensing technologies and global system for longterm research and integrated management of ecosystems’’) and # 174013 by the Serbian Ministry of Education and Science. We want to thank H. M. Pillot (Tilburg, The Netherlands) for the great support and useful advice about this study. Also we want to thank Professor B. Rossaro, Dipartimento di Biologia, Sezione di Ecologia, Università degli Studi di Milano, Italy, and Professor T. Penczak (Poland) for help with data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djuradj Milošević.

Additional information

Handling Editor: Piet Spaak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milošević, D., Simić, V., Stojković, M. et al. Spatio-temporal pattern of the Chironomidae community: toward the use of non-biting midges in bioassessment programs. Aquat Ecol 47, 37–55 (2013). https://doi.org/10.1007/s10452-012-9423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-012-9423-y

Keywords

Navigation