Skip to main content
Log in

Toxic gas sensing on nanoporous carbons

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Activated carbons, either synthetic, developed in our laboratory, or commercial were prepared or further modified, in order to introduce specific heteroatoms such as oxygen, nitrogen and sulfur to their matrix. Chips with thin layers of active materials were prepared and used for ammonia or hydrogen sulfide sensing. They showed high sensitivity and their response was selective. They also responded linearly to changes in various ammonia concentrations. The incorporation of specific heteroatoms to the carbons matrices was an effective means to control the type of the charge carriers, and thus the electronic and transport properties. Depending on the specific chemical arrangement of heteroatoms, materials exhibiting n- or p-type conduction were obtained. Pyridines and nitropyridines played an important role. A small amount of ammonia was oxidized to NO2 on the surface of sulfur and nitrogen co-doped carbons, due to their ability to generate superoxide ions. When adsorbed in the pore system of the carbons, it affected the electrical signal due to an increase in the population of holes as charge carriers. The synergistic effect between the heteroatoms greatly enhanced the electrical response of the chips. The mechanism governing the reversible sensing involved several processes, including specific interactions between NH3 and surface functional groups, pore-filling with NH3/NO2, and electron–hole conductivity. The structural and chemical features of the carbons were found to act either synergistically or competitively. Surface acidity, by enhancing the affinity of the carbons towards NH3 adsorption, contributed to an ammonia selective detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Copyright 2015, Royal Society of Chemistry (Travlou et al. 2015); Copyright 2016, American Chemical Society (Travlou et al. 2016c)

Fig. 4

Copyright 2015, Royal Society of Chemistry (Travlou et al. 2015); Copyright 2016, American Chemical Society (Travlou et al. 2016c)

Fig. 5
Fig. 6

Copyright 2016, Elsevier (Travlou et al. 2016b)

Fig. 7

Copyright 2016, Elsevier (Travlou et al. 2016b)

Fig. 8

Copyright Elsevier, 2016 (Travlou et al. 2016a, b)

Similar content being viewed by others

References

  • Agmon, N.: The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)

    Article  CAS  Google Scholar 

  • Bandosz, T.J.: On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J. Colloid Interface Sci. 246, 1–20 (2002)

    Article  CAS  Google Scholar 

  • Ghosh, R., Singh, A., Santra, S., Ray, S.K., Chandra, A., Guha, P.K.: Highly sensitive large area multi-layered graphene based flexible ammonia sensor. Sens. Actuators B. 205, 67–73 (2014)

    Article  CAS  Google Scholar 

  • Gonçalves, M., Sánchez-García, L., Oliveira Jardim, E. De, Silvestre-Albero, J., Rodríguez-Reinoso, F.: Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions. Environ. Sci. Technol. 45, 10605–10610 (2011)

    Article  Google Scholar 

  • Huang, X., Hu, N., Gao, R., Yu, Y., Wang, Y., Yang, Z., Siu-Wai Kong, E., Wei, H., Zhang, Y.: Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22, 22488 (2012)

    Article  CAS  Google Scholar 

  • Jagiello, J., Olivier, J.P.: Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption. 19, 777–783 (2013a)

    Article  CAS  Google Scholar 

  • Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon. 55, 70–80 (2013b)

    Article  CAS  Google Scholar 

  • Johnson, J.L., Behnam, A., An, Y., Pearton, S.J., Ural, A.: Experimental study of graphitic nanoribbon films for ammonia sensing. J. Appl. Phys. 109, 124301 (2011)

    Article  Google Scholar 

  • Kiciński, W., Szala, M., Bystrzejewski, M.: Sulfur-doped porous carbons: Synthesis and applications. Carbon. 68, 1–32 (2014)

    Article  Google Scholar 

  • Liang, J., Jiao, Y., Jaroniec, M., Qiao, S.Z.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chemie. Int. Ed. 51, 11496–11500 (2012)

    Article  CAS  Google Scholar 

  • Lide, D.R.: Handbook of chemistry and physics, 85th edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  • Liu, C.C., Walters, A.B., Vannice, M.A.: Measurement of electrical properties of a carbon black. Carbon. 33, 1699–1708 (1995)

    Article  CAS  Google Scholar 

  • Luo, G., Liu, L., Zhang, J., Li, G., Wang, B., Zhao, J.: Hole defects and nitrogen doping in graphene: Implication for super capacitor applications. ACS Appl. Mater. Interfaces 5, 11184–11193 (2013)

    Article  CAS  Google Scholar 

  • Mangu, R., Rajaputra, S., Singh, V.P.: MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology. 22, 215502 (2011)

    Article  Google Scholar 

  • Nguyen, L.Q., Phan, P.Q., Duong, H.N., Nguyen, C.D., Nguyen, L.H.: Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles. Sensors. 13, 1754–62 (2013)

    Article  CAS  Google Scholar 

  • Ni, S., Li, Z.Y., Yang, J.L.: Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale. 4, 1184–1189 (2012)

    Article  CAS  Google Scholar 

  • OSHA online. https://www.osha.gov/dts/chemicalsampling/data/CH_218300.html. Accessed 12 June 2016

  • Ostafiychuk, B.K., Budzulyak, I.M., Rachiy, B.I., Kuzyshyn, M.M., Shyyko, L.O.: Nanoporous nitrogen-containing coal for electrodes of supercapacitors. 1, 17–22 (2013)

  • Petit, C., Kante, K., Bandosz, T.J.: The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon. 48, 654–667 (2010)

    Article  CAS  Google Scholar 

  • Scardamaglia, M., Struzzi, C., Aparicio Rebollo, F.J., De Marco, P., Mudimela, P.R., Colomer, J.F., Amati, M., Gregoratti, L., Petaccia, L., Snyders, R., Bittencourt, C: Tuning electronic properties of carbon nanotubes by nitrogen grafting: chemistry and chemical stability. Carbon. 83, 118–127 (2015)

    Article  CAS  Google Scholar 

  • Seredych, M., Bandosz, T.J.: S-doped micro/mesoporous carbon–graphene composites as efficient supercapacitors in alkaline media. J. Mater. Chem. A 1, 11717 (2013)

    Article  CAS  Google Scholar 

  • Seredych, M., Rodríguez-Castellón, E., Biggs, M.J., Skinner, W., Bandosz, T.J.: Effect of visible light and electrode wetting on the capacitive performance of S- and N-doped nanoporous carbons: importance of surface chemistry. Carbon. 78, 540–558 (2014)

    Article  CAS  Google Scholar 

  • Sheng, Z.H., Shao, L., Chen, J.J., Bao, W. J., Wang, F. B., Xia, X.H.: Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011)

    Article  CAS  Google Scholar 

  • Singh, K., Travlou, N.A., Bashkova, S., Rodríguez-Castellón, E., Bandosz, T.J.: Nanoporous carbons as gas sensors: Exploring the surface sensitivity. Carbon. (2014)

  • Strelko, V.V., Kartel, N.T., Dukhno, I.N., Kuts, V.S., Clarkson, R.B., Odintsov, B.M.: Mechanism of reductive oxygen adsorption on active carbons with various surface chemistry. Surf. Sci. 548, 281–290 (2004)

    Article  CAS  Google Scholar 

  • Travlou, N.A., Seredych, M., Rodríguez-Castellón, E., Bandosz, T.J.: Activated carbon-based gas sensors: effects of surface features on the sensing mechanism. J. Mater. Chem. A. 3, 3821–3831 (2015)

    Article  CAS  Google Scholar 

  • Travlou, N.A., Rodríguez-Castellón, E., Bandosz, T.J.: Sensing of NH3 on heterogeneous nanoporous carbons in the presence of humidity. Carbon. 100, 64–73 (2016a)

    Article  CAS  Google Scholar 

  • Travlou, N.A., Seredych, M., Rodríguez-Castellón, E., Bandosz, T.J.: Insight into ammonia sensing on heterogeneous S- and N- co-doped nanoporous carbons. Carbon. 96, 1014–1021 (2016bb)

    Article  CAS  Google Scholar 

  • Travlou, N.A., Ushay, C., Seredych, M., Rodríguez-Castellón, E., Bandosz, T. J.: Nitrogen-Doped Activated Carbon-Based Ammonia Sensors: Effect of Specific Surface Functional Groups on Carbon Electronic Properties. ACS Sensors. 1, 591–599 (2016c)

    Article  CAS  Google Scholar 

  • Tsubota, T., Takenaka, K., Murakami, N., Ohno, T.: Performance of nitrogen- and sulfur-containing carbon material derived from thiourea and formaldehyde as electrochemical capacitor. J. Power Sources. 196, 10455–10460 (2011)

    Article  CAS  Google Scholar 

  • Usachov, D., Vilkov, O., Grüneis, A., Haberer, D., Fedorov, A., Adamchuk, V.K., Preobrajenski, A.B., Dudin, P., Barinov, A., Oehzelt, M., Laubschat, C., Vyalikh, D.V.: Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011)

    Article  CAS  Google Scholar 

  • Wang, Y., Shao, Y., Matson, D.W., Li, J., Lin, Y.: Nitrogen-doped graphene and its biosensing. ACS Nano. 4, 1790–1798 (2010)

    Article  CAS  Google Scholar 

  • Wang, D.W., Li, F., Yin, L.C., Lu, X., Chen, Z.G., Gentle, I.R., Lu, G.Q., Cheng, H.M.: Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem. Eur. J. 18, 5345–51 (2012)

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, L., Hu, N., Wang, Y., Zhang, Y., Zhou, Z., Liu, Y., Shen, S., Peng, C.: Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 9, 251 (2014)

    Article  Google Scholar 

  • Xiang, C., Jiang, D., Zou, Y., Chu, H., Qiu, S., Zhang, H., Xu, F., Sun, L., Zheng, L.: Ammonia sensor based on polypyrrole–graphene nanocomposite decorated with titania nanoparticles. Ceram. Int. 41, 6432–6438 (2015).

    Article  CAS  Google Scholar 

  • Yavari, F., Chen, Z., Thomas, A.V., Ren, W., Cheng, H. M., Koratkar, N.: High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1, 166 (2011)

    Article  Google Scholar 

  • Zhang, R., Alecrim, V., Hummelgård, M., Andres, B., Forsberg, S., Andersson, M., Olin, H.: Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing. Sci. Rep. 5, 7676 (2015)

    Article  CAS  Google Scholar 

  • Zhao, X., Zhang, Q., Chen, C.-M., Zhang, B., Reiche, S., Wang, A., Zhang, T., Schlögl, R., Sheng Su, D.: Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano. Energy. 1, 624–630 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ARO (Army Research Office Grant W911NF-13-1-0225, and NSF collaborative CBET Grant No. 1133112). Special thanks are addressed to Drs. E. Rodriguez-Castellon, M. Seredych and Mr. Anmol Jadvani for their contributions to our understanding of toxic gas sensing on porous carbons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa J. Bandosz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travlou, N.A., Bandosz, T.J. Toxic gas sensing on nanoporous carbons. Adsorption 23, 271–280 (2017). https://doi.org/10.1007/s10450-016-9848-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9848-z

Keywords

Navigation