Skip to main content
Log in

Adsorption of Reactive Black 5 onto quaternized 2-dimethylaminoethyl methacrylate based polymer/clay nanocomposites

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

[2-(Methacryloyloxy)ethyl]dimethylhexadecylammonium bromide (DMAC16) was synthesized by means of quaternization of 2-dimethylaminoethyl methacrylate with 1-bromohexadecane. Poly(DMAC16) and poly(DMAC16)-bentonite nanocomposites having different amount (3, 5, 7, 10, 15 wt%) of bentonite were prepared by in situ suspension polymerization in the presence of ethyleneglycol dimethacrylate and 2,2′-azo-bis-isobutyronitrile as a crosslinking agent and initiator, respectively. Polymer/clay nanocomposites were characterized by using Fourier transform infrared spectrophotometer, thermogravimetric analyser, X-ray diffraction analyser, energy dispersive X-ray attached scanning electron microscope and zetameter. Adsorption behaviors of bentonite, poly(DMAC16) and nanocomposites towards Reactive Black 5 (RB5) were investigated with respect to solution pH. Adsorption capacities of nanocomposites were found to be higher than those of bentonite and poly(DMAC16) in most cases. Additionally, the highest adsorption capacity was obtained with the nanocomposite containing 10 % of bentonite (PNc10) at all studied pH values. Effects of various parameters such as contact time, initial dye concentration, and temperature on the adsorption capability of PNc10 were also evaluated. According to kinetic and isothermal studies, adsorption processes of RB5 onto PNc10 were fitted to Langmuir isotherm and pseudo-second-order kinetic model well. Maximum adsorption capacity of PNc10 from the Langmuir isotherm model at 40 °C were found to be 833.3 mg g−1. Thermodynamic parameters such as \(\Delta G^{\circ}\), \(\Delta H^{\circ}\), \(\Delta S^{\circ}\) and E a were also determined for all over the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Aziz, H.M., El-Zahhar, A.A., Siyam, T.: Sorption studies of neutral red dye onto poly(acrylamide-co-maleic acid)-kaolinite/montmorillonite composites. J. Appl. Polym. Sci. 124, 386–396 (2012)

    Article  CAS  Google Scholar 

  • Azizian, S.: Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276, 47–52 (2004)

    Article  CAS  Google Scholar 

  • Bhattacharyya, K.G., Gupta, S.S.: Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chem. Eng. J. 136, 1–13 (2008)

    Article  CAS  Google Scholar 

  • Carrizosa, M.J., Koskinen, W.C., Hermsion, M.C., Cornejeo, J.: Dicamba adsorption–desorption on organoclays. J. Appl. Clay Sci. 18, 223–231 (2001)

    Article  CAS  Google Scholar 

  • Chiou, M.S., Ho, P.Y., Li, H.Y.: Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments 60, 69–84 (2004)

    Article  CAS  Google Scholar 

  • Chiou, M.S., Li, H.Y.: Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50, 1095–1105 (2003)

    Article  CAS  Google Scholar 

  • Ciesielczyk, F., Bartczak, P., Jesionowski, T.: A comprehensive study of Cd(II) ions removal utilizing high-surface-area binary Mg–Si hybrid oxide adsorbent. Int. J. Environ. Sci. Technol. 12, 3613–3626 (2015)

    Article  CAS  Google Scholar 

  • Ekici, S., Işıkver, Y., Saraydın, D.: Poly(acrylamide-sepiolite) composite hydrogels: preparation, swelling and dye adsorption properties. Polym. Bull. 57, 231–241 (2006)

    Article  CAS  Google Scholar 

  • Elwakeel, K.Z., Abd El-Ghaffar, M.A., El-Kousy, S.M., El-Shorbagy, H.G.: Enhanced remediation of Reactive Black 5 from aqueous media using new chitosan ion exchangers. J. Dispers. Sci. Technol. 34, 1008–1019 (2013)

    Article  CAS  Google Scholar 

  • Erdem, B., Özcan, A., Gök, Ö., Özcan, A.S.: Immobilization of 2,2′-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions. J. Hazard. Mater. 163, 418–426 (2009a)

    Article  CAS  Google Scholar 

  • Erdem, M., Yüksel, E., Tay, T., Çimen, Y., Türk, H.: Synthesis of novel methacrylate based adsorbents and their sorptive properties towards p-nitrophenol. J. Colloid Interface Sci. 333, 40–48 (2009b)

    Article  CAS  Google Scholar 

  • Freundlich, H.M.F.: Über die adsorption in lösungen. Z. Phys. Chem. 57, 385–470 (1906)

    CAS  Google Scholar 

  • Gao, H., Wang, Y., Zheng, L.Q.: Hydroxyl-functionalized ionic liquid-based cross-linked polymer as highly efficient adsorbent for anionic azo dyes removal. Chem. Eng. J. 234, 372–379 (2013)

    Article  CAS  Google Scholar 

  • Gemeay, A.H., Sherbiny, E.I., Zaki, A.B.: Adsorption and kinetic studies of the intercalation of some organic compounds onto Na+-montmorillonite. J. Colloid Interface Sci. 245, 116–125 (2002)

    Article  CAS  Google Scholar 

  • Greluk, M., Hubicki, Z.: Effect of basicity of anion exchangers and number and positions of sulfonic groups of acid dyes on dyes adsorption on macroporous anion exchangers with styrenic polymer matrix. Chem. Eng. J. 215–216, 731–739 (2013)

    Article  Google Scholar 

  • Gupta, V.K., Mittal, A., Jain, R., Mathur, M., Sikarwar, S.: Adsorption of Safranin-T from wastewater using waste materials-activated carbon and activated rice husks. J. Colloid Interface Sci. 303, 80–86 (2006)

    Article  CAS  Google Scholar 

  • Ho, Y.S., McKay, G.: Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. 76, 183–191 (1998)

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., Pattabhi, S.: Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol. 87, 129–132 (2003)

    Article  CAS  Google Scholar 

  • Kaemkit, C., Monvisade, P., Siriphannon, P., Nukeaw, J.: Water-soluble chitosan intercalated montmorillonite nanocomposites for removal of Basic Blue 66 and Basic Yellow 1 from aqueous solution. J. Appl. Polym. Sci. 128(1), 879–887 (2013)

    Article  CAS  Google Scholar 

  • Kaplan, M., Kaşgöz, H.: Hydrogel nanocomposite sorbents for removal of basic dyes. Polym. Bull. 67, 1153–1168 (2011)

    Article  CAS  Google Scholar 

  • Klapiszewski, L., Bartczak, P., Wysokowski, M., Jankowska, M., Kabat, K., Jesionowski, T.: Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chem. Eng. J. 260, 684–693 (2015)

    Article  CAS  Google Scholar 

  • Lagergren, S.: Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1–39 (1898)

    Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Li, Q., Yue, Q., Su, Y., Gao, B., Li, J.: Two-step kinetic study on the adsorption and desorption of reactive dyes at cationic polymer/bentonite. J. Hazard. Mater. 165, 1170–1178 (2009)

    Article  CAS  Google Scholar 

  • McKay, G.: The adsorption of dyestuffs from aqueous solution using activated carbon: analytical solution for batch adsorption based on external mass transfer and pore diffusion. Chem. Eng. J. 27, 187–196 (1983)

    Article  CAS  Google Scholar 

  • Nollet, H., Roels, M., Lutgen, P., Van der Meeren, P., Verstraete, W.: Removal of PCBs from wastewater using fly ash. Chemosphere 53, 655–665 (2003)

    Article  CAS  Google Scholar 

  • Özcan, A.S., Erdem, B., Özcan, A.: Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloid Surf. A 266, 73–81 (2005)

    Article  Google Scholar 

  • Park, Y., Ayoko, G.A., Horvath, E., Kurdi, R., Kristof, J., Frost, R.L.: Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. J. Colloid Interface Sci. 393, 319–334 (2013)

    Article  CAS  Google Scholar 

  • Pereira, M.F.R., Soares, S.F., Orfao, J.J.M., Figueiredo, J.L.: Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41, 811–821 (2003)

    Article  CAS  Google Scholar 

  • Piccin, J.S., Dotto, G.L., Vieira, M.L.G., Pinto, L.A.A.: Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan. J. Chem. Eng. Data 56, 3759–3765 (2011)

    Article  CAS  Google Scholar 

  • Qiao, S., Hu, Q., Haghseresht, F., Hu, X., Lua, G.Q.: An investigation on the adsorption of acid dyes on bentonite based composite adsorbent. Sep. Purif. Technol. 67, 218–225 (2009)

    Article  CAS  Google Scholar 

  • Ramakrishna, K.R., Viraraghavan, T.: Dye removal using low cost adsorbents. Water Sci. Technol. 36, 189–196 (1997)

    Article  CAS  Google Scholar 

  • Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  CAS  Google Scholar 

  • Shen, C.S., Shen, Y., Wen, Y.Z., Wang, H.Y., Liu, W.P.: Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Res. 45, 5200–5210 (2011)

    Article  CAS  Google Scholar 

  • Shukla, N.B., Madras, G.: Adsorption of anionic dyes on a reversibly swelling cationic superabsorbent polymer. J. Appl. Polym. Sci. 127, 2251–2258 (2013)

    Article  Google Scholar 

  • Wang, C.C., Juang, L.C., Hsu, T.C., Lee, C.K., Lee, J.F., Huang, F.C.: Adsorption of basic dyes onto montmorillonite. J. Colloid Interface Sci. 273, 80–86 (2004)

    Article  CAS  Google Scholar 

  • Wang, L., Zhang, J., Wang, A.: Removal of Methylene Blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf. A 322, 47–53 (2008)

    Article  CAS  Google Scholar 

  • Wawrzkiewicz, M., Hubicki, Z.: Equilibrium and kinetic studies on the adsorption of acidic dye by the gel anion exchanger. J. Hazard. Mater. 172, 868–874 (2009)

    Article  CAS  Google Scholar 

  • Weng, C.H., Pan, Y.F.: Adsorption of a cationic dye (Methylene Blue) onto spent activated clay. J. Hazard. Mater. 144, 355–362 (2007)

    Article  CAS  Google Scholar 

  • Yu, Y., Zhuang, Y.Y., Wang, Z.H.: Adsorption of water-soluble dye onto functionalized resin. J. Colloid Interface Sci. 242, 288–293 (2001)

    Article  CAS  Google Scholar 

  • Zhao, S., Zhou, F., Li, L., Cao, M., Zuo, D., Liu, H.: Removal of anionic dyes from aqueous solutions by adsorption of chitosan-based semi-IPN hydrogel composites. Compos. Part B Eng. 43, 1570–1578 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of Anadolu University for the Scientific Research Projects (Project No. 1101F013). We also thank to Prof. Dr. Adnan Özcan (Anadolu University) for his valuable contribution during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Erdem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, B., Erdem, M. & Özcan, A.S. Adsorption of Reactive Black 5 onto quaternized 2-dimethylaminoethyl methacrylate based polymer/clay nanocomposites. Adsorption 22, 767–776 (2016). https://doi.org/10.1007/s10450-016-9773-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9773-1

Keywords

Navigation