Skip to main content
Log in

Adsorption equilibrium and kinetics of cesium onto insoluble Prussian blue synthesized by an immediate precipitation reaction between Fe3+ and [Fe(CN)6]4−

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption equilibrium and kinetics of cesium ion (Cs+) onto insoluble Prussian blue (PB) prepared by an immediate precipitation reaction between Fe3+ and [Fe(CN)6]4− was investigated under initial Cs+ concentration of under 0.15 mmol/L. Synthesis conditions in this method were almost insensitive to the adsorption ability of insoluble PB, and this method provided one of the smallest PB crystallites among synthesis methods. Even when molar concentration of H3O+ was more than 200 times higher or molar concentration of K+ was more than 50,000 times higher than that of Cs+ in the aqueous solution, the equilibrium adsorption amount was reduced by only approximately one-half to two-third of that in the pure system; that is, the insoluble PB synthesized possessed a considerably high adsorption selectivity for Cs+. In contrast to the excellent adsorption ability under adsorption equilibrium, adsorption rate was quite slow. It took at least 2 weeks at 25 °C to completely attain the adsorption equilibrium, even though the primary particle size (crystallite size) and secondary particle size (aggregate size of the crystallites) were sufficiently small at approximately 14 nm and 53–106 μm, respectively. This slow adsorption is primarily due to the large resistance of intracrystalline diffusion; the intracrystalline diffusion coefficient was extremely small at less than 3.3 × 10−22 m2/s. We also found that increase in temperature could significantly decrease this diffusion resistance, resulting in much quicker elimination of Cs+ from the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ayrault, S., Jimenez, B., Garnier, E., Fedoroff, M., Jones, D.J., Loos-Neskovic, C.: Sorption mechanisms of cesium on CuII2FeII(CN)6 and CuII3[FeIII(CN)6]2 hexacyanoferrates and their relation to the crystalline structure. J. Solid State Chem. 141(2), 185–475 (1998)

    Article  Google Scholar 

  • Buser, H.J., Schwarzenbach, D., Petter, W., Ludi, A.: The crystal structure of Prussian blue: Fe4[Fe(CN)6]3·xH2O. Inorg. Chem. 16(11), 2704–2710 (1977)

    Article  CAS  Google Scholar 

  • Faustino, P.J., Yang, Y., Progar, J.J., Brownell, C.R., Sadrieh, N., May, J.C., Leutzinger, E., Place, D.A., Duffy, E.P., Houn, F., Loewke, S.A., Mecozzi, V.J., Ellison, C.D., Khan, M.A., Hussain, A.S., Lyon, R.C.: Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J. Pharm. Biomed. Anal. 47(1), 114–125 (2008)

    Article  CAS  Google Scholar 

  • Georgea, A., Sharmaa, S.K., Chawlab, S., Malika, M.M., Qureshia, M.S.: Detailed of X-ray diffraction and photoluminescence studies of Ce doped ZnO nanocrystals. J. Alloy. Compd. 509, 5942–5946 (2011)

    Article  Google Scholar 

  • Gotoh, A., Uchida, H., Ishizaki, M., Satoh, T., Kaga, S., Okamoto, S., Ohta, M., Sakamoto, M., Kawamoto, T., Tanaka, H., Tokumoto, H., Hara, S., Shiozaki, H., Yamada, M., Miyake, M., Kurihara, M.: Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology 18, 345609–345615 (2007)

    Article  Google Scholar 

  • Hu, M., Jiang, J.S., Ji, R.P., Zeng, Y.: Prussian blue mesocrystals prepared by a facile hydrothermal method. CrystEngComm 11, 2257–2259 (2009)

    Article  CAS  Google Scholar 

  • Ishizaki, M., Akiba, S., Ohtani, A., Hoshi, Y., Ono, K., Matsuba, M., Togashi, T., Kananizuka, K., Sakamoto, M., Takahashi, A., Kawamoto, T., Tanaka, H., Watanabe, M., Arisaka, M., Nankawad, T., Kurihara, M.: Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans. 42, 16049–16055 (2013)

    Article  CAS  Google Scholar 

  • Itaya, K., Uchida, I., Vernon, D.N.: Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 19(6), 162–168 (1986)

    Article  CAS  Google Scholar 

  • Ito, A., Suenaga, M., Ono, K.: Mössbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J. Chem. Phys. 48, 3597–3599 (1968)

    Article  CAS  Google Scholar 

  • Kärger, J., Ruthven, D.M.: Diffusion in zeolite, pp. 230–244. Wiley, New York (1992)

    Google Scholar 

  • Keggin, J.F., Miles, F.D.: Structures and formulæ of the Prussian blues and related compounds. Nature 137, 577–578 (1936)

    Article  CAS  Google Scholar 

  • Louise, S., Fernande, G., Gary, J.L., Pauline, N., Pierre, B., David, S.: Relationship between the synthesis of Prussian blue pigments, their color, physical properties, and their behavior in paint layers. J. Phys. Chem. C 117(19), 9693–9712 (2013)

    Article  Google Scholar 

  • Mimura, H., Lehto, J., Harjula, R.: Ion exchange of cesium on potassium nickel hexacyanoferrate(II). J. Nucl. Sci. Technol. 34(5), 484–489 (1997)

    Article  CAS  Google Scholar 

  • Moritomo, Y., Tanaka, H.: Alkali cation potential and functionality in the nanoporous Prussian blue analogues. Adv. Condens. Matter Phys. 539620, 9 (2013)

    Google Scholar 

  • Nntsott, J.B., am Rrr rv, D.P.: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions in crystals. Proc. Phys. Soc. 57, 160–177 (1945)

    Article  Google Scholar 

  • Kulesza, P.J.: Solid-state electrochemistry of iron hexacyanoferrate (Prussian blue type) powders evidence for redox transitions in mixed-valence ionically conducting microstructures. J. Electroanal. Chem. 289, 103–116 (1990)

    Article  CAS  Google Scholar 

  • Richard, E.W., Surendra, N.G., Billy, J.M.: Prussian blues. Inorg. Chem. 9(11), 2512–2516 (1970)

    Article  Google Scholar 

  • Steffen, B., Frank, S., Helge, T., Dieter, F., Jörg, K., Jürgen, H.: Tracing water and cation diffusion in hydrated zeolites of type Li-LSX by pulsed field gradient NMR. J. Phys. Chem. C 117(47), 24866–24872 (2013)

    Article  Google Scholar 

  • Sonneveld, E.J., Visser, J.W.: Automatic collection of powder data from photographs. J. Appl. Crystallogr. 8, 1–7 (1975)

    Article  Google Scholar 

  • Suzuki, M.: Adsorption engineering, pp. 108–109. Kodansya, Tokyo (1990a)

    Google Scholar 

  • Suzuki, M.: Adsorption engineering, pp. 95–98. Kodansya, Tokyo (1990b)

    Google Scholar 

  • Thanapon, S., Vichaya, S., Robert, J.W., Rafal, M.G., Glen, E.F., Shane, A., Charles, T., Wassana, Y.: Selective capture of cesium and thallium from natural waters and simulated wastes, with copper ferrocyanide functionalized mesoporous silica. J. Hazard. Mater. 182(1–3), 225–231 (2010)

    Google Scholar 

  • Torad, N.L., Hu, M., Imura, M., Naito, M., Yamauchi, Y.: Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J. Mater. Chem. 22, 18261–18267 (2012)

    Article  CAS  Google Scholar 

  • Yang, H., Sun, L., Zhai, J., Li, H., Zhao, Y.A., Yu, H.: In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J. Mater. Chem. A 2, 326–332 (2014)

    Article  CAS  Google Scholar 

  • Wu, X., Cao, M., Hu, C., He, X.: Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst. Growth Des. 6(1), 26–28 (2006)

    Article  CAS  Google Scholar 

  • Zheng, X.J., Kuang, Q., Xu, T., Jiang, Z.Y., Zhang, S.H., Xie, Z.X., Huang, R.B., Zheng, L.X.: Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. J. Phys. Chem. C 111, 4499–4502 (2007)

    Article  CAS  Google Scholar 

  • Zboril, R., Machala, L., Mashlan, M., Sharma, V.: Iron(III) oxide nanoparticles in the thermally induced oxidative decomposition of Prussian blue, Fe4[Fe(CN)6]3. Cryst. Growth Des. 4(6), 1317–1325 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Fujita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, H., Sasano, H., Miyajima, R. et al. Adsorption equilibrium and kinetics of cesium onto insoluble Prussian blue synthesized by an immediate precipitation reaction between Fe3+ and [Fe(CN)6]4− . Adsorption 20, 905–915 (2014). https://doi.org/10.1007/s10450-014-9635-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-014-9635-7

Keywords

Navigation