Skip to main content
Log in

Prediction of non-isothermal ternary gas-phase breakthrough experiments based on binary data

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The results of breakthrough experiments in an adsorption column packed with commercial activated carbon for three binary CO2/N2 mixtures as well as for two ternary CO2/N2/H2 mixtures are presented. The experiments were carried out at two different temperatures (25 and 45 °C), four different pressures (1, 5, 10 and 20 bar) and three different flow rates. To analyze the experiments, the breakthrough profiles are simulated using a one-dimensional model consisting of material and energy balances together with the necessary constitutive equations. Transport parameters such as the heat and mass transfer coefficients are fitted to the results from the experiments with the binary mixtures (CO2/N2) and then compared to parameters obtained in a previous work (Adsorption 18: 143–161, 2012) for binary CO2/H2 mixtures. Furthermore, the parameters obtained for binary mixtures are used to predict the outcome of breakthrough experiments with ternary CO2/N2/H2 mixtures. These simulations are then tested by experiments, showing that their prediction capability is rather satisfactory for a large range of experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c :

Fluid phase concentration (mol/m3)

C ads :

Heat capacity of the adsorbed phase [J/(K kg)]

C g :

Heat capacity of the gas [J/(m3 K)]

C s :

Heat capacity of the solid [J/(K kg)]

C w :

Lumped heat capacity of the wall [J/(m3 K)]

D L :

Axial dispersion coefficient (m2/s)

d i :

Inner column diameter (m)

d o :

Outer column diameter (m)

d p :

Particle diameter (m)

\(\Updelta H\) :

Heat of adsorption (J/mol)

h L :

Heat transfer coefficient (lumping fluid phase + wall) [W/(m2 K)]

h w :

Heat transfer coefficient (lumping wall + heating) [W/(m2 K)]

k i :

Overall mass transfer coefficient (1/s)

K L :

Axial thermal conductivity in the fluid phase [W/(m K)]

L :

Column length (m)

N :

Number of species (–)

N meas :

Number of measured outputs (–)

N obs :

Number of measured observations (–)

N p :

Number of fitted parameters (–)

Nu:

Nusselt number

p :

Vector of parameters to be estimated

p* :

Optimal value of the fitted parameters

Δp* :

Fitting uncertainty of parameters p

p :

Fluid pressure (Pa)

q :

Solid phase concentration (mol/kg)

q eq :

Solid phase concentration at equilibrium (mol/kg)

R :

Ideal gas constant [J/(K mol)]

Re:

Reynolds number

t :

Time (s)

T :

Temperature (K)

T w :

Wall temperature, (K)

T amb :

Ambient temperature (K)

u :

Superficial gas velocity (m/s)

u set :

Superficial gas velocity setpoint given to the MFC (m/s)

y :

Mole fraction (–)

z :

Space coordinate in axial direction (m)

εb :

Bed void fraction (–)

εt :

Overall void fraction (–)

ɛMFC :

Uncertainty on the measured u set (m/s)

ɛset :

Deviation between fitted velocity and MFC setpoint (m/s)

η1, η2 :

Parameters for Leva’s correlation (–)

\(\Upphi\) :

Objective function (–)

μ:

Dynamic viscosity (Pa s)

ρ:

Fluid phase density (kg/m3)

ρ b :

Bulk density of the packing (kg/m3)

ρ p :

Particle density (kg/m3)

i :

Component i

F :

Feed

0:

Initial

BPR:

Back pressure regulator

CCS:

Carbon capture and storage

EOS:

Equation of state

IGCC:

Integrated gasification combined cycle

MFC:

Mass flow controller

MLE:

Maximum likelihood estimate

MS:

Mass spectrometer

PSA:

Pressure swing adsorption

References

  • Agarwal, A., Biegler, L.T., Zitney, S.E.: Superstructure-based optimal synthesis of pressure swing adsorption cycles for precombustion CO2 capture. Ind. Eng. Chem. Res. 49(11), 5066–5079 (2010)

    Article  CAS  Google Scholar 

  • Bárcia, P.S., Bastin, L., Hurtado, E.J., Silva, J.C., Rodrigues, A.E., Chen, B.: Single and multicomponent sorption of CO, CH4 and N2 in a microporous metal-organic framework. Sep. Sci. Technol. 43(13), 3494–3521 (2008)

    Article  Google Scholar 

  • Bard Y. (1974) Nonlinear parameter estimation. Academic Press, New York

    Google Scholar 

  • Casas, N., Schell, J., Pini, R., Mazzotti, M.: Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption 18, 143–161 (2012)

    Article  CAS  Google Scholar 

  • Casas, N., Schell, J., Joss, L., Mazzotti, M.: A parametric study of a PSA process for pre-combustion CO2 capture. Sep. Purif. Technol. 104, 183–192 (2013)

    Article  CAS  Google Scholar 

  • Casas, N., Schell, J., Blom, R., Mazzotti, M.: MOF and UiO-67/MCM-41 adsorbents for pre-combustion CO2 capture by PSA: breakthrough experiments and process design. Sep. Purif. Technol. 112, 34–48 (2013)

    Article  CAS  Google Scholar 

  • Farooq, S., Qinglin, H., Karimi, I.A.: Identification of transport mechanism in adsorbent micropores from column dynamics. Ind. Eng. Chem. Res. 41(5), 1098–1106 (2002)

    Article  CAS  Google Scholar 

  • Grande, C.A., Lopes, F.V.S., Ribeiro, A.M., Loureiro, J.M., Rodrigues, A.E.: Adsorption of off-gases from steam methane reforming (H2, CO2,  CH4, CO and N2) on activated carbon. Sep. Sci. Technol. 43(6), 1338–1364 (2008)

    Article  CAS  Google Scholar 

  • Hassan, M.M., Raghavan, N.S., Ruthven, D.M., Boniface, H.A.: Pressure swing adsorption. II Experimental study of a nonlinear trance component isothermal system. AIChE J. 31(12), 2008–2016 (1985)

    Article  CAS  Google Scholar 

  • Jee, J.-G., Kim, M.-B., Lee, C.-H.: Adsorption characteristics of hydrogen mixtures in layered beds: binary, ternary and five-component mixtures. Ind. Eng. Chem. Res. 40(3), 868–878 (2001)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance. Chem. Eng. Sci. 66, 303–317 (2011)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Kinetics of hydrocarbon adsorption on activated carbon and silica gel. AIChE J. 43(3), 761–776 (1997)

    Article  CAS  Google Scholar 

  • Saleman, T.L.H., Watson, G.C.Y., Rufford, T.E., Hofman, P.S., Chan, K.I., May, E.F.: Capacity and kinetic measurements of methane and nitrogen adsorption on H+-mordenite at 243–303 K and pressures to 900 kPa using a dynamic column breakthrough apparatus. Adsorption (2013). doi:10.1007/s10450-013-9546-z

  • Schell, J., Casas, N., Pini, R., Mazzotti, M.: Pure and binary adsorption of CO2,H2 and N2 on activated carbon. Adsorption 18(1), 49–65 (2011)

    Article  Google Scholar 

  • Schell, J., Casas, N., Marx, D., Mazzotti, M.: Pre-combustion CO2 capture by PSA: comparison of laboratory PSA experiments and simulations. Ind. Eng. Chem. Res. (2013)

  • Turner, J.C.R.: On the formulation of the diffusion coefficient in isothermal binary systems. Chem. Eng. Sci. 30, 151–154 (1975)

    Article  CAS  Google Scholar 

  • Wang, L., Liu, Z., Li, P., Yu, J., Rodrigues, A.E.: Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem. Eng. J. 197, 151–161 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial support of the Swiss National Science Foundation through grant NF 200021-130186 and of the Commission for Technology and Innovation through grant CTI no. 12903.1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian Marx.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (1640 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marx, D., Joss, L., Casas, N. et al. Prediction of non-isothermal ternary gas-phase breakthrough experiments based on binary data. Adsorption 20, 493–510 (2014). https://doi.org/10.1007/s10450-013-9593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9593-5

Keywords

Navigation