Skip to main content
Log in

Adsorption and diffusion of nitrogen, methane and carbon dioxide in aluminophosphate molecular sieve AlPO4-11

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The knowledge about the adsorption and diffusion properties (specially about diffusion) of aluminophosphate molecular sieves is very scarce in the literature. These materials offer interesting properties as adsorbents as they have a polar framework and do not contain charge-balancing cations. In this work, the adsorption isotherms of nitrogen, methane and carbon dioxide over an AlPO4-11 sample synthesized in our laboratories have been measured with a volumetric method at 25, 35, 50 and 65 °C over a pressure range up to 110 kPa. The adsorption capacities of each gas are determined by the strength of interaction with the pore surface (carbon dioxide > methane > nitrogen). The equilibrium selectivity to carbon dioxide is quite high with respect to other adsorbents without cations due to the polarity of the aluminophosphate framework. The adsorption Henry’s law constants and diffusion time constants of nitrogen, methane and carbon dioxide in the synthesized AlPO4-11 material have been measured from pulse experiments. A pressure swing adsorption (PSA) process for recovering methane from a carbon dioxide/methane mixture (resembling biogas) has been designed using a dynamic model where the measured adsorption equilibrium and kinetic information has been incorporated. The simulation results show that the proposed process could be simpler than other PSA processes for biogas upgrading based on cation-containing molecular sieves such as 13X zeolite, as it can treat the biogas at atmospheric pressure, and it requires a lower pressure ratio, to produce high purity methane with high recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

b :

Adsorption affinity (Pa−1)

b 0 :

Pre exponential constant (Eq. 1) (Pa−1)

c :

Adsorptive concentration in the gas phase (mol m−3)

C :

Total gas concentration (mol m−3)

c p,g :

Gas heat capacity at constant pressure (J mol−1 K−1)

c p,s :

Adsorbent heat capacity (J kg−1 K−1)

c v,g :

Gas heat capacity at constant volume (J mol−1 K−1)

D c :

Intracrystalline diffusivity (m2 s−1)

D L :

Axial dispersion coefficient (m2 s−1)

D m :

Molecular diffusivity (m2 s−1)

f pulse :

Function defined in Eq. (13)

h ext :

Wall to air heat transfer coefficient (W m−2 K−1)

h w :

Gas to wall heat transfer coefficient (W m−2 K−1)

K c :

Dimensionless Henry’s law constant

k f :

External mass transfer coefficient (m s−1)

k macro :

Combined mass transfer coefficient in the external film and the macropores (m s−1)

k s :

LDF mass transfer coefficient (s−1)

L :

Bed length (m)

l :

Wall thickness (m)

n :

Adsorbed concentration (mol kg−1)

n max :

Maximal adsorbed concentration (mol kg−1)

p :

Adsorptive pressure (Pa)

P :

Pressure (Pa)

q :

Adsorbed concentration (mol m−3)

Q :

Volumetric flow rate (ms−1)

R :

Gas constant (J mol−1 K−1)

r c :

Half diffusion length in the spherulites (m)

r 2 :

Coefficient of determination

Re :

Particle Reynolds number

R l :

Bed radius (m)

R p :

Size of the adsorbent particle (m)

S bed :

Bed cross-section (m2)

Sc :

Schmidt number

T :

Temperature (K)

t :

Time (s)

T w :

Wall temperature (K)

u :

Superficial velocity (m s−1)

v 0 :

Interstitial velocity (m s−1)

V D :

Plug-flow volume (m3)

V T :

Tank volume (m3)

x :

Dimensionless axial coordinate

x r :

Dimensionless radial coordinate

z :

Axial coordinate (m)

−∆H ads :

Adsorption enthalpy (J mol−1)

y :

Mole fraction in the gas phase

ε :

Bed voidage fraction between adsorbent particles

ε macro :

Pellet macroporosity

ε p :

Particle porosity

λ :

Axial heat dispersion coefficient (W m−1 K−1)

μ :

First moment of the pulse response, gas viscosity (Pa s)

ρ c :

Crystal density (kg m−3)

ρ g :

Gas density (kg m−3)

ρ p :

Particle density (kg m−3)

τ :

Tortuosity

References

  • Baerlocher, C.H., Meier, W.M., Olson, D.H.: Atlas of Zeolite Framework types, 5th edn. Elsevier, Amsterdam (2001)

    Google Scholar 

  • Da Silva, F.A., Rodrigues, A.E.: Propylene/propane separation by vacuum swing adsorption using 13X zeolite. AIChE J. 47, 341–357 (2001)

    Article  Google Scholar 

  • Delgado, J.A., Rodrigues, A.E.: Analysis of the boundary conditions for the simulation of the pressure equalization step in PSA cycles. Chem. Eng. Sci. 63, 4452–4463 (2008)

    Article  CAS  Google Scholar 

  • Delgado, J.A., Uguina, M.A., Sotelo, J.L., Águeda, V.I., Gómez, P.: Numerical simulation of a three-bed PSA cycle for the methane/nitrogen separation with silicalite. Sep. Purif. Technol. 77, 7–17 (2011)

    Article  CAS  Google Scholar 

  • Dunne, J.A., Mariwala, R., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12, 5888–5895 (1996)

    Article  CAS  Google Scholar 

  • Dwivedi, P.N., Upadhyay, S.N.: Particle-fluid mass transfer in fixed and fluidized columns. Ind. Eng. Chem. Process Des. Dev. 16, 157–165 (1977)

    Article  CAS  Google Scholar 

  • Farooq, S., Ruthven, D.M.: Heat effects in adsorption column dynamics. 1. Comparison of one- and two-dimensional models. Ind. Eng. Chem. Res. 29, 1076–1084 (1990)

    Article  CAS  Google Scholar 

  • Finlayson, B.A.: Nonlinear analysis in chemical engineering. McGraw Hill, New York (1980)

    Google Scholar 

  • Fu, L., Zhai, J.P., Hu, J.M., Li, I.L., Ruan, S.C., Tang, Z.K.: Synthesis of large silicon substituted AlPO4-11 single crystals. Micropor. Mesopor. Mat. 137, 1–7 (2011)

    Article  CAS  Google Scholar 

  • Grande, C.A., Rodrigues, A.E.: Biogas to fuel by vacuum pressure swing adsorption I. Behavior of equilibrium and kinetic-based adsorbents. Ind. Eng. Chem. Res. 46, 4595–4605 (2007)

    Article  CAS  Google Scholar 

  • Holman, J.P.: Heat Transfer, 10th edn. McGraw Hill, Boston (2010)

    Google Scholar 

  • Karger, J., Ruthven, D.M.: Diffusion in zeolites and other microporous solids. Wiley, New York (1992)

    Google Scholar 

  • Lok, B.M, Messina, C.A., Patton, R.L., Gajek, R.T., Cannan, T.R., Flanigen, E.M.: Crystalline silicoaluminophosphates. U.S. Patent 4,440,871 (1984)

  • Lucena, S.M.P., Pereira, J.A.F.R., Cavalcante, C.L.: Structural analysis and adsorption sites of xylenes in AlPO4-5 and AlPO4-11 using molecular simulation. Micropor. Mesopor. Mat. 88, 135–144 (2006)

    Article  CAS  Google Scholar 

  • Madsen, N.K., Sincovec, R.F.: Algorithm 540: PDECOL, general collocation software for partial differential equations [D3]. ACM Trans. Math. Soft. 5, 326–351 (1979)

    Article  Google Scholar 

  • Predescu, L., Tezel, F.H., Chopra, S.: Adsorption of nitrogen, methane, carbon monoxide, and their binary mixtures on aluminophosphate molecular sieves. Adsorption 3, 7–25 (1997)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Santos, M.S., Grande, C.A., Rodrigues, A.E.: New cycle configuration to enhance performance of kinetic PSA processes. Chem. Eng. Sci. 66, 1590–1599 (2011)

    Article  CAS  Google Scholar 

  • Sircar, S., Kumar, R., Koch, W.R., VanSloun, J.: Recovery of methane from landfill gas. U.S. Patent 4,770,676 (1988)

  • Suzuki, M.: Adsorption Engineering. Kodansha, Tokyo (1990)

    Google Scholar 

  • Valenzuela, D.P., Myers, A.L.: Adsorption equilibrium data handbook. Prentice Hall, New Jersey (1989)

    Google Scholar 

  • Walendziewski, J., Pniak, B.: Synthesis, physicochemical properties and hydroisomerization activity of SAPO-11 based catalysts. Appl. Catal. A 250, 39–47 (2003)

    Article  CAS  Google Scholar 

  • Wang, Q., Chen, G., Xu, S.: Hierarchical architecture observed in microspheres comprising microporous AlPO4-11 nanocrystals. Micropor. Mesopor. Mat. 119, 315–321 (2009)

    Article  CAS  Google Scholar 

  • Wilke, A.C.: Biogas: a renewable biofuel, Biogas use, http://biogas.ifas.ufl.edu/. Accessed Nov 2012 (2012)

  • Wilson, S.T., Lok, B.M., Messina, C.A., Cannan, T.R., Flanigen, E.M.: Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 104, 1146–1147 (1982a)

    Article  CAS  Google Scholar 

  • Wilson, S.T., Lok, B.M., Flanigen, E.M.: Crystalline metallophosphate compositions. U.S. Patent 4, 310,440 (1982b)

  • Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, New Jersey (2003)

    Book  Google Scholar 

  • Zhang, D., Li, W., Liu, Z., Xu, R.: Molecular simulation of methane adsorption in aluminophosphate molecular sieve AlPO4-11. J. Mol. Struc.-THEOCHEM 804, 89–94 (2007)

    Article  CAS  Google Scholar 

  • Zhu, G., Qiu, S., Gao, F., Wu, G., Wang, R., Li, B., Fang, Q., Li, Y., Gao, B., Xu, X., Terasaki, O.: Synthesis of aluminophosphate molecular sieve AlPO4-11 nanocrystals. Micropor. Mesopor. Mat. 50, 129–135 (2001)

    Article  CAS  Google Scholar 

  • Zhu, Z.D., Hartmann, M., Kevan, L.: Catalytic conversion of methanol to olefins on SAPO-n (n = 11, 34, and 35), CrAPSO-n, and Cr − SAPO-n molecular sieves. Chem. Mater. 12, 2781–2787 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, J.A., Águeda, V.I., Uguina, M.A. et al. Adsorption and diffusion of nitrogen, methane and carbon dioxide in aluminophosphate molecular sieve AlPO4-11. Adsorption 19, 407–422 (2013). https://doi.org/10.1007/s10450-012-9463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9463-6

Keywords

Navigation