Skip to main content
Log in

Adsorption of aromatic trace compounds from organic solvents on activated carbons—experimental results and modeling of adsorption equilibria

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Liquid phase adsorption is an important process for the removal of trace compounds from liquid matrices. Until today, research on liquid phase adsorption is less substantial than work on other thermal separation processes. The description of relevant mechanisms and interactions is difficult mainly because of lacking experimental data. This paper presents extensive isotherm measurements for the adsorption of organic trace compounds from organic solvents on activated carbons. A systematic variation of molecular structure of adsorptives and solvents enabled the identification of main structural factors dominating adsorption in these systems. The factors are polarity, extension and density of π electrons and sterical complexity. An analysis of the measured isotherms revealed incremental effects of functional groups and structural elements being characteristic for the adsorption capacities on activated carbons. Three consecutive empirical prediction models of adsorption equilibria are developed and compared. The empirical Freundlich equation appeared to be best suited for fitting the experimental data. The models apply an incremental concept permitting the calculation of adsorption isotherms on the basis of the structural increments of solvent and adsorptive molecules. The three models have a different extent of underlying data, a different number of parameters and a different range of application. The experimental data are predicted with satisfying accuracy for many engineering applications. The most sophisticated model has the most extensive range of application and manages on the smallest number of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c i,0 :

Initial concentration of adsorptive i [mg adsorptive/L solvent]

c i,eq :

Equilibrium concentration of adsorptive i [mg adsorptive/L solvent]

K :

Freundlich parameter [mmol adsorptive/kg adsorbent]

M i :

Molar mass of adsorptive i [g/mol]

M solv :

Molar mass of solvent [g/mol]

m i :

Weighed mass of adsorptive i [g]

n :

Freundlich parameter [–]

ρ sol :

Solution density [g/L]

q i :

Adsorbent load [mmol adsorptive/kg adsorbent]

V sol :

Solution volume [L]

x i :

Molar fraction of adsorptive i [mol/mol]

K :

Freundlich parameter [mmol adsorptive/kg adsorbent]

n :

Freundlich parameter [–]

N C,solv :

Number of carbons atoms in the solvent hydrocarbon chain [–]

N C,ads :

Number of carbons atoms in the adsorptive hydrocarbon chain [–]

References

  • Abe, I., Hayashi, K., Kitagawa, M., Hirashima, T.: Prediction of adsorbability of organic compounds from aqueous solution on activated carbon by means of the linear free-energy relationship. Bull. Chem. Soc. Jpn. 56, 1002–1005 (1983)

    Article  CAS  Google Scholar 

  • American Water Works Association: Powdered activated carbon AWWA B 600-78 (1978)

  • Berti, C., Ulbig, P., Burdorf, A., Seippel, J., Schulz, S.: Correlation and prediction of liquid-phase adsorption on zeolithes using group contributions based on adsorbate-solid solution theory. Langmuir 15, 6035–6042 (1999)

    Article  CAS  Google Scholar 

  • Berti, C., Ulbig, P., Schulz, S.: Correlation and prediction of adsorption from liquid mixtures on solids by use of GE-models. Adsorption 6, 79–91 (2000)

    Article  CAS  Google Scholar 

  • Boehm, H., Diehl, E., Heck, W., Sappok, R.: Surface oxides of carbon. Angew. Chem. 76(17), 742–751 (1964)

    Article  CAS  Google Scholar 

  • Boulinguiez, B., Le Cloirec, P., Wolbert, D.: Revisiting the determination of Langmuir parameters—application to tetrahydrothiophene adsorption onto activated carbon. Langmuir 24, 6420–6424 (2008)

    Article  CAS  Google Scholar 

  • Brasquet, C., Bourges, B., Le Cloirec, P.: Quantitative structure—property relationship (QSPR) for the adsorption of organic compounds onto activated carbon cloth: comparison between multiple linear regression and neural network. Environ. Sci. Technol. 33, 4226–4231 (1999)

    Article  CAS  Google Scholar 

  • Chitra, S., Govind, R.: Application of a group contribution method for predicting adsorbability on activated carbon. AIChE J. 32, 167–169 (1986)

    Article  CAS  Google Scholar 

  • Freundlich, H.: Über die Adsorption in Lösungen. Z. Phys. Chem. 57, 385–470 (1907)

    CAS  Google Scholar 

  • Gmehling, J., Onken, U., Arlt, W., Grenzhausen, P., Kolbe, B., Weidrich, U.: Vapor-liquid equilibrium data collection, 19 parts. DECHEMA Chem. Ser., Frankfurt/Main, starting (1977)

  • Gmehling, J.: Dortmund data bank—basis for the development of prediction methods. CODATA Bulletin (1985)

  • Gräf, T., Pasel, C., Bathen, D.: Adsorptive Entfernung von Monophenolethern aus Ketonen und Estern mit Aktivkohlen – Experimente und Modellierung. Chem. Ing. Tech. 82, 1763–1769 (2010)

    Article  Google Scholar 

  • Gula, F., Paillat, D.: Decolorization of refinery liquors: a technical and economic comparison between the different systems using activated carbon or resins. Int. Sugar J. 107, 235–240 (2005)

    CAS  Google Scholar 

  • Karanfil, T., Dastgheib, S.: Trichloroethylene adsorption by fibrous and granular activated carbons: aqueous phase, gas phase, and water vapor adsorption studies. Environ. Sci. Technol. 38, 5834–5841 (2004)

    Article  CAS  Google Scholar 

  • Kier, L., Hall, L.: Molecular Connectivity in Structure-Activity Analysis. Wiley, Letchworth (1986)

    Google Scholar 

  • Klamt, A.: Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99, 2224–2235 (1995)

    Article  CAS  Google Scholar 

  • Langmuir, J.: The adsorption of gases on plane surfaces of glass, mica and platinum I. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Nirmalakhandan, N., Speece, R.: Adsorption from aqueous phase by activated carbon: a simplified application of the solvophobic theory. Environ. Sci. Technol. 24, 575–580 (1990)

    Article  CAS  Google Scholar 

  • Pahl, C., Pasel, C., Luckas, M., Bathen, D.: Adsorptive water removal from organic solvents in the ppm-region. Chem. Ing. Tech. 83, 177–182 (2011)

    Article  CAS  Google Scholar 

  • Randic, M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  CAS  Google Scholar 

  • River, M., Ibáñez, R., Ortiz, M.: Mathematical modelling of styrene drying by adsorption onto activated alumina. Chem. Eng. Sci. 57, 2589–2592 (2002)

    Article  Google Scholar 

  • Robens, E.: Characterization of Porous Solids, III. Elsevier, Amsterdam (1994)

    Google Scholar 

  • Rudzinski, W., Everett, D.: Adsorption of Gases on Heterogeneous Surfaces. Academic Press, New York (1992)

    Google Scholar 

  • Schulthess, C., Dey, D.: Estimation of Langmuir constants using linear and nonlinear least squares regression analyses. Soil Sci. Soc. Am. J. 60, 433–442 (1996)

    Article  CAS  Google Scholar 

  • Schürer, G., Peukert, W.: Prediction of adsorption equilibria from physical properties of the pure components. Adsorption 11, 43–47 (2005)

    Article  Google Scholar 

  • Shirgaonkar, I., Joglekar, H., Mundale, V., Joshi, J.: Adsorption equilibrium data for substituted phenols on activated carbon. J. Chem. Eng. Data 37, 175–179 (1992)

    Article  CAS  Google Scholar 

  • Singleton, V., Draper, D.: Adsorbents and wines. I. Selection of activated charcoals for treatment of wine. Am. J. Enol. Vitic. 13, 114–125 (1962)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Pasel.

Appendix: Tables of experimental data

Appendix: Tables of experimental data

Table 7 Data of Fig. 2. Adsorbent load for benzene, toluene, and p-xylene at c i,eq =10−4 mol i/mol methanol
Table 8 Data of Fig. 3. Adsorption isotherms of aromatic compounds in methanol on CGF 1-3/100
Table 9 Data of Fig. 6. Adsorption isotherms of 4-methoxyphenol in primary alcohols on CGF 1-3/100
Table 10 Data of Fig. 7. Adsorption isotherms of 4-methoxyphenol in C5 alcohols on CGF 1-3/100
Table 11 Data of Fig. 10. Model calculations and experimental data for adsorption of 4-methoxyphenol from organic solvents on CGF 1-3/100
Table 12 Data of Fig. 11. Model calculations and experimental data for adsorption of 4-ethoxyphenol from organic solvents on CGF 1-3/100

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gräf, T., Pasel, C., Luckas, M. et al. Adsorption of aromatic trace compounds from organic solvents on activated carbons—experimental results and modeling of adsorption equilibria. Adsorption 18, 127–141 (2012). https://doi.org/10.1007/s10450-012-9388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9388-0

Keywords

Navigation