Skip to main content
Log in

Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Approximations of solutions of fractional Laplacian equations on bounded domains are considered. Such equations allow global interactions between points separated by arbitrarily large distances. Two approximations are introduced. First, interactions are localized so that only points less than some specified distance, referred to as the interaction radius, are allowed to interact. The resulting truncated problem is a special case of a more general nonlocal diffusion problem. The second approximation is the spatial discretization of the related nonlocal diffusion problem. A recently developed abstract framework for asymptotically compatible schemes is applied to prove convergence results for solutions of the truncated and discretized problem to the solutions of the fractional Laplacian problems. Intermediate results also provide new convergence results for the nonlocal diffusion problem. Special attention is paid to limiting behaviors as the interaction radius increases and the spatial grid size decreases, regardless of how these parameters may or may not be dependent. In particular, we show that conforming Galerkin finite element approximations of the nonlocal diffusion equation are always asymptotically compatible schemes for the corresponding fractional Laplacian model as the interaction radius increases and the grid size decreases. The results are developed with minimal regularity assumptions on the solution and are applicable to general domains and general geometric meshes with no restriction on the space dimension and with data that are only required to be square integrable. Furthermore, our results also solve an open conjecture given in the literature about the convergence of numerical solutions on a fixed mesh as the interaction radius increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aksoylu, B., Parks, M.: Variational theory and domain decomposition for nonlocal problems. Appl. Math. Comput. 217, 6498–6515 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Aksoylu, B., Unlu, Z.: Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces. SIAM J. Numer. Anal. 52, 653–677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreu-Vaillo, F., Mazón, J., Rossi, J., Toledo-Melero, J.: Nonlocal Diffusion Problems. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  4. Babuka, I., Banerjee, U., Osborn, J.: Generalized finite element methods: main ideas, results and perspective. International Journal of Computational Methods 1, 67–103 (2004)

    Article  MATH  Google Scholar 

  5. Bobaru, F., Yang, M., Alves, L., Silling, S., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Inter. J. Numer. Meth. Engrg. 77, 852–877 (2009)

    Article  MATH  Google Scholar 

  6. Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of elliptic operators. Math. Comp. 84(295), 2083–2110 (2015)

  7. Brezzi, F., Rappaz, J., Raviart, P.: Finite dimensional approximation of nonlinear problems part I: branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.: Non-local diffusions, drifts and games. In: Nonlinear Partial Differential Equations, pp. 37–52. Springer, Berlin (2012)

    Chapter  Google Scholar 

  9. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Rational Mech. Anal. 200, 59–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  11. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 676–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Mod. Meth. Appl. Sci. 23, 493–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Q., Huang, Z., Lehoucq, R.: Nonlocal convection-diffusion volume-constrained problems and jump processes. Disc. Cont. Dyn. Sys. B 19, 373–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Q., Ju, L., Tian, L.L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comp. 82, 1889–1922 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, Q., Tian, L., Zhao, X.: A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J. Numer. Anal. 51, 1211–1234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ervin, V., Heuer, N., Roop, J.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guan, Q.-Y., Ma, Z.-M.: Boundary problems for fractional Laplacians. Stochastics Dyn. 5, 385–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, B., Larazov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52, 2272–2294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klafter, J., Lim, S., Metzler, R.: Fractional Dynamics: Recent Advances. World Scientific (2011)

  21. Macek, R., Silling, S.: Peridynamics via finite element analysis. Finite Elem. Anal. Design 43, 1169–1178 (2007)

    Article  MathSciNet  Google Scholar 

  22. Matache, A., Von Petersdorff, T., Schwab, C.: Fast deterministic pricing of options on Lévy driven assets. ESAIM: Mathematical Modelling and Numerical Analysis 38, 37–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mengesha, T., Du, Q.: Analysis of a scalar nonlocal peridynamic model with a sign changing kernel. Disc. Cont. Dynam. Sys. B 18, 1415–1437 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meerschaert, M., Sikorskii, A.: Stochastic Models for Fractional Calculus. Studies in Applied Mathematics, vol. 43. Walter de Gruyter (2011)

  25. Meerschaert, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15, 733–791 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  29. Silvestre, L.: Holder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55, 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Silling, S.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stein, E.: Singular Integrals and Differentiability Properties of Functions, vol. 2. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  32. Tadjeran, C., Meerschaert, M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220.2, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tian, X.: Theory of Asymptotically Compatible Schemes and its Applications, Master’s Thesis, Pennsylvania State University, University Park (2014)

  34. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tian, X., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52, 1641–1665 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, X., Du, Q.: Nonconforming discontinuous Galerkin methods for nonlocal varational problems. SIAM J. Numer. Anal. 53, 762–781 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Tian, H.: A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comp. Phys. 240, 49–57 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, H., Yang, D., Zhu, S.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 52, 1292–1310 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Webb, M.: Analysis and Approximation of a Fractional Differential Equation, Master’S Thesis, Oxford University Oxford (2012)

  40. Yang, Q., Turner, I., Liu, F., Ilic, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comp. 33, 1159–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48, 1759–1780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Du.

Additional information

Communicated by: John Lowengrub

Supported in part by the U.S. NSF grants DMS-1318586 and DMS-1315259, AFOSR MURI Center for Material Failure Prediction Through Peridynamics, and OSD/ARO/MURI W911NF-15-1-0562 on Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Du, Q. & Gunzburger, M. Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains. Adv Comput Math 42, 1363–1380 (2016). https://doi.org/10.1007/s10444-016-9466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9466-z

Keywords

Mathematics Subject Classification (2010)

Navigation