Skip to main content
Log in

Automated parameter tuning based on RMS errors for nonequispaced FFTs

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the error behavior of the well known fast Fourier transform for nonequispaced data (NFFT) with respect to the \(\mathcal {L}_{2}\)-norm. We compare the arising errors for different window functions and show that the accuracy of the algorithm can be significantly improved by modifying the shape of the window function. Based on the considered error estimates for different window functions we are able to state an easy and efficient method to tune the involved parameters automatically. The numerical examples show that the optimal parameters depend on the given Fourier coefficients, which are assumed not to be of a random structure or roughly of the same magnitude but rather subject to a certain decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beylkin, G.: On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal. 2, 363–381 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chui, C.K.: An Introduction to Wavelets. Academic Press, Boston (1992)

    MATH  Google Scholar 

  3. Deserno, M., Holm, C.: How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678–7693 (1998)

    Article  Google Scholar 

  4. Duijndam, A.J.W., Schonewille, M.A.: Nonuniform fast Fourier transform. Geophysics 64, 539–551 (1999)

    Article  Google Scholar 

  5. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat. Comput. 14, 1368–1393 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369, 253–287 (1921)

    Article  MATH  Google Scholar 

  7. Fessler, J.A., Sutton, B.P.: Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 51, 560–574 (2003)

    Article  MathSciNet  Google Scholar 

  8. Fourmont, K.: Non equispaced fast Fourier transforms with applications to tomography. J. Fourier Anal. Appl. 9, 431–450 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greengard, L., Lee, J.Y.: Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46, 443–454 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hackbusch, W.: Entwicklungen nach Exponentialsummen. Techn. rep. Max Planck Institute for Mathematics in the Sciences. http://www.mis.mpg.de/de/publications/andere-reihen/tr/report-0405.html (2005)

  11. Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. Taylor & Francis, Inc., Bristol, PA, USA (1988)

  12. Jackson, J.I., Meyer, C.H., Nishimura, D.G., Macovski, A.: Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imag. 10, 473–478 (1991)

    Article  Google Scholar 

  13. Jacob, M.: Optimized least-square nonuniform fast Fourier transform. IEEE Trans. Signal Process. 57, 2165–2177 (2009). english

    Article  MathSciNet  Google Scholar 

  14. Johnson, S., Carvellino, A., Wuttke libcerf, J.: Numeric library for complex error functions libcerf, numeric library for complex error functions. http://apps.jcns.fz-juelich.de/libcerf

  15. Kaiser, J.F.: Digital filters digital filters. In: Kuo, F.F., Kaiser, J.F. (eds.) System Analysis by Digital Computer. Wiley, New York (1966)

  16. Keiner, J., Kunis, S., Potts, D.: Using NFFT3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1–30 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kunis, S., Kunis, S.: The nonequispaced FFT on graphics processing units. PAMM Proc. Appl. Math. Mech., 12 (2012)

  18. Kunis, S., Potts, D., Steidl, G.: Fast Gauss transform with complex parameters using NFFTs. J. Numer. Math. 14, 295–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pippig, M.: Massively Parallel, Fast Fourier Transforms and Particle-Mesh Methods. Dissertation. Technische Universität Chemnitz, Faculty of Mathematics. english (2015)

  20. Pippig, M., Potts, D.: Parallel three-dimensional nonequispaced fast Fourier transforms and their application to particle simulation. SIAM J. Sci. Comput. 35, C411–C437 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Plonka, G., Tasche, M.: On the computation of periodic spline wavelets. Appl. Comput. Harmon. Anal. 2, 1–14 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Potts, D., Steidl, G.: Fast summation at nonequispaced knots by NFFTs fast summation at nonequispaced knots by NFFTs. SIAM J. Sci. Comput. 24, 2013–2037 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: A tutorial. In: Benedetto, J.J., Ferreira, P.J.S.G. (eds.) Modern Sampling Theory: Mathematics and Applications, pp 247–270. Birkhäuser, Boston, MA, USA (2001)

  24. Schoenberg, I.J.: Cardinal interpolation and spline functions. J. Approx. Theory 2(2), 167–206 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  25. Steidl, G.: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9, 337–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Volkmer, T.: OpenMP parallelization in the NFFT software library. Preprint 2012-07, Faculty of Mathematics, Technische Universität Chemnitz (2012)

  27. Ware, A.F.: Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev. 40, 838–856 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Z., Jacob, M.: Mean square optimal NUFFT approximation for efficient non-Cartesian MRI reconstruction. J. Mag. Reson. 242, 126–135 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Nestler.

Additional information

Communicated by: Leslie Greengard

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestler, F. Automated parameter tuning based on RMS errors for nonequispaced FFTs. Adv Comput Math 42, 889–919 (2016). https://doi.org/10.1007/s10444-015-9446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9446-8

Keywords

Mathematics Subject Classifications (2010)

Navigation