Skip to main content
Log in

Sobolev estimates for constructive uniform-grid FFT interpolatory approximations of spherical functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The fast Fourier transform (FFT) based matrix-free ansatz interpolatory approximations of periodic functions are fundamental for efficient realization in several applications. In this work we design, analyze, and implement similar constructive interpolatory approximations of spherical functions, using samples of the unknown functions at the poles and at the uniform spherical-polar grid locations \(\left (\frac {j\pi }{N}, \frac {k \pi }{N}\right )\), for j=1,…,N−1, k=0,…,2N−1. The spherical matrix-free interpolation operator range space consists of a selective subspace of two dimensional trigonometric polynomials which are rich enough to contain all spherical polynomials of degree less than N. Using the \({\mathcal {O}}(N^{2})\) data, the spherical interpolatory approximation is efficiently constructed by applying the FFT techniques (in both azimuthal and latitudinal variables) with only \({\mathcal {O}}(N^{2} \log N)\) complexity. We describe the construction details using the FFT operators and provide complete convergence analysis of the interpolatory approximation in the Sobolev space framework that are well suited for quantification of various computer models. We prove that the rate of spectrally accurate convergence of the interpolatory approximations in Sobolev norms (of order zero and one) are similar (up to a log term) to that of the best approximation in the finite dimensional ansatz space. Efficient interpolatory quadratures on the sphere are important for several applications including radiation transport and wave propagation computer models. We use our matrix-free interpolatory approximations to construct robust FFT-based quadrature rules for a wide class of non-, mildly-, and strongly-oscillatory integrands on the sphere. We provide numerical experiments to demonstrate fast evaluation of the algorithm and various theoretical results presented in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press (2003)

  2. Ahrens, C.D.: Lagrange discrete ordinates: a new angular discretization for the three dimensional linear Boltzmann equation. Nuclear Sci. and Eng. 180(3), 273–285 (2015)

    Article  Google Scholar 

  3. Ahrens, C.D., Beylkin, G.: Rotationally invariant quadratures for the sphere. Proc. Royal Soc. A 465, 3103–3125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: an Introduction. Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York (2012)

    Book  MATH  Google Scholar 

  5. Chen, X., Frommer, A., Lang, B.: Computational existence proof for spherical t-designs. Numer. Math. 117, 289–305 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Domínguez, V., Ganesh, M.: Interpolation and cubature approximations and analysis for a class of wideband integrals on the sphere. Adv. Comput. Math. 39 (3–4), 547–584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Domínguez, V., Graham, I.G., Smyshlyaev, V.P: Stability and error estimates for Filon-Clenshaw-Curtis rules for highly-oscillatory integrals. IMA J. Numer. Anal. 31, 1250–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Domínguez, V., Heuer, N.H., Sayas, F.J.: Hilbert scales and Sobolev spaces defined by associated Legendre functions. J. Comput. Appl. Math. 235, 3481–3501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Driscoll, J.R., Healy, D.: Computing Fourier transforms and convolutions on the 2d-sphere. Adv. in Appl. Math. 15, 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ganesh, M., Graham, I.G., Sivaloganathan, J.: A new spectral boundary integral collocation method for three-dimensional potential problems. SIAM J. Numer. Anal. 35, 778–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganesh, M., Hawkins, S.C.: A high-order algorithm for multiple electromagnetic scattering in three dimensions. Numer. Algorithms 50, 49–510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ganesh, M., Hawkins, S.C.: A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230, 104–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ganesh, M., Hawkins, S.C.: A stochastic pseudospectral and T-matrix algorithm for acoustic scattering by a class of multiple particle configurations. J. Quant. Spectr. Radiative Trans. 123, 41–52 (2013)

    Article  Google Scholar 

  15. Ganesh, M., Hawkins, S.C.: An efficient \(\mathcal {O}({N})\) algorithm for computing \(\mathcal {O}({N}^2)\) acoustic wave interactions in large N-obstacle three dimensional configurations. BIT Numer. Math. 55, 117–139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ganesh, M., Mhaskar, H.N.: Matrix-free interpolation on the sphere. SIAM J. Numer. Anal. 44, 1314–1331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ganesh, M., Mhaskar, H.N.: Quadrature-free quasi-interpolation on the sphere. Elec. Trans. Numer. Anal. 25, 101–114 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Ganesh, M., Thompson, T.: Spectral properties of Schrödinger operators on superconducting surfaces. J. Spectral Theory 4, 569–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gr̈af, M., Potts, D.: On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. 119, 699–724 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hesse, K., Sloan, I.H.: Hyperinterpolation on the sphere. In: Govil, N.K., et al. (eds.) Frontiers in Interpolation and Approximation, volume 31 of Pure and Applied Mathematics. Taylor–Francis Books (2006)

  21. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., et al. (eds.) Handbook of Geomathematics, pp. 1185–1219 (2010)

  22. Ivanov, K., Petrushev, P.: Iregular sampling of band-limited functions on the sphere. Appl. Comput. Harmon. Anal. 37, 545562 (2014)

    Article  MathSciNet  Google Scholar 

  23. Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York (2009)

    Book  Google Scholar 

  24. Keiner, J., Kunis, S., Potts, D.: Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13, 435–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Keiner, J., Kunis, S., Potts, D.: Using NFFT3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software 36:Article 19:1–30 (2009)

  26. Larsen, E.W., Morel, J.E.: Nuclear computational science: a century in review Chapter 1, pp. 1–83. Springer, Berlin Heidelberg New York (2010)

    Google Scholar 

  27. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  28. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, Berlin Heidelberg New York (2001)

    Book  MATH  Google Scholar 

  29. Reimer, M.: Hyperinterpolation on the sphere at the minimal projection order. J. Approx. Theory 104, 272–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Saranen, J., Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Monographs in Mathematics. Springer, Berlin Heidelberg New York (2002)

    Book  MATH  Google Scholar 

  31. Sloan, I., Womersley, R.: The uniform error of hyperinterpolation on the sphere. In: Haußmann, W. (ed.) Advances in Multivariate Approximation, volume 107 of Mathematical Research, pp. 289–306. Wiley, New York (1999)

    Google Scholar 

  32. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83, 238–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sloan, I.H., Womersley, R.S.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21, 107–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y.G., Sloan, I.H., Gia, Q.T.L., Womersley, R.S.: Fully discrete needlet approximation on the sphere (2015). arXiv:1502.05806

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganesh.

Additional information

Communicated by: Enrique Zuazua

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez, V., Ganesh, M. Sobolev estimates for constructive uniform-grid FFT interpolatory approximations of spherical functions. Adv Comput Math 42, 843–887 (2016). https://doi.org/10.1007/s10444-015-9445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9445-9

Keywords

Mathematics Subject Classification (2010)

Navigation