Skip to main content
Log in

Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We study the hybridizable discontinuous Galerkin (HDG) method for the spatial discretization of time fractional diffusion models with Caputo derivative of order 0 < α < 1. For each time t ∈ [0, T], when the HDG approximations are taken to be piecewise polynomials of degree k ≥ 0 on the spatial domain Ω, the approximations to the exact solution u in the L (0, T; L 2(Ω))-norm and to ∇u in the \(L_{\infty }(0, \textit {T}; \mathbf {L}_{2}({\Omega }))\)-norm are proven to converge with the rate h k+1 provided that u is sufficiently regular, where h is the maximum diameter of the elements of the mesh. Moreover, for k ≥ 1, we obtain a superconvergence result which allows us to compute, in an elementwise manner, a new approximation for u converging with a rate h k+2 (ignoring the logarithmic factor), for quasi-uniform spatial meshes. Numerical experiments validating the theoretical results are displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comp. 81, 107–129 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous sub-diffusion equation. Math. Comp. 81, 345–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, J., Liu, F., Liu, Q., Anh, V., Turner, I.: Numerical simulation for the three-dimension fractional sub-diffusion equation. Appl. Math. Model. 38, 3695–3705 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comp. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Mustapha, K.: A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130, 293–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comp. 81, 1327–1353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusive-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, M.: Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algor. 62, 383–409 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gastaldi, L., Nochetto, R.H.: Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations, RAIRO Modél. Math. Anal. Numér. 23, 103–128 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Jin, B., Lazarov, R., Zhou, Z.: Two schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, arXiv:1404.3800 (2014)

  13. Kirby, R.M., Sherwin, S.J., Cockburn, B.: To HDG or to CG: A comparative study. J. Sci. Comput. 51, 183–212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation, SIAM. J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, Y., Xu, C.: Finite differnce/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algor. 52, 69–88 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. McLean, W., Mustapha, K.: Error analysis of a discontinuous Galerkin method for a fractional diffusion equation with a non-smooth initial data. J. Comput. Phys. 293, 201–217 (2015)

    Article  MathSciNet  Google Scholar 

  18. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130, 497–516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algor. 61, 525–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mustapha, K., Abdallah, B., Furati, K.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Numer. Anal. 52, 2512–2529 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algor. 56, 159–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32, 906–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mustapha, K., Schötzau, D.: Well-posedness of h p−version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods, Proceedings of the International Conference on Spectral and High Order Methods (Trondheim, Norway), Lect. Notes Comput. Sci. Engrg., Springer Verlag (2009)

  26. Quintana-Murillo, J., Yuste, S.B.: An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonlin. Dyn. 6, 021014 (2011)

    Article  Google Scholar 

  27. Sweilam, N.H., Khader, M.M., Mahdy, A.M.S.: Crank-Nicolson finite difference method for solving time-fractional diffusion equation. J. Fract. Cal. Appl. 2, 1–9 (2012)

    MATH  Google Scholar 

  28. Xu, Q., Zheng, Z.: Discontinuous Galerkin method for time fractional diffusion equation. J. Informat. Comput. Sci. 10, 3253–3264 (2013)

    Article  Google Scholar 

  29. Yuste, S.B., Quintana-Murillo, J.: On Three Explicit Difference Schemes for Fractional Diffusion and Diffusion-Wave Equations. Phys. Scripta T 136, 014025 (2009)

    Google Scholar 

  30. Zengo, F., LI, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976—A3000 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, Y.-N., Sun, Z.-Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, X., Sun, Z.-z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, X., Xu, Q.: Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient. Appl. Math. Model. 38, 3848–3859 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassem Mustapha.

Additional information

Communicated by: Jan Hesthaven

Support of the King Fahd University of Petroleum and Minerals (KFUPM) through the project FT131011 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustapha, K., Nour, M. & Cockburn, B. Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems. Adv Comput Math 42, 377–393 (2016). https://doi.org/10.1007/s10444-015-9428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9428-x

Keywords

Mathematics Subject Classification (2010)

Navigation