Skip to main content
Log in

Implicit partitioning methods for unknown parameter sets

In the context of the reduced basis method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The key condition for the application of the Reduced Basis Method (RBM) to Parametrized Partial Differential Equations (PPDEs) is the availability of affine decompositions of the equations in parameter and space. The efficiency of the RBM depends on both the number of reduced basis functions and the number of affine terms. A possible way to reduce the costs is a partitioning of the parameter domain. One creates separate RB spaces (Haasdonk et al., Math. Comput.Model. Dyn. Syst. 17(4), 423–442, 2011) and affine decompositions (Eftang and Stamm, Int. J. Numer. Methods Eng. 90(4), 412–428, 2012) on each subdomain. Since the solutions are supposed to be smooth in parameter, the variation of the solutions on a subdomain becomes small and only few basis functions and affine terms are needed. Based upon the Empirical Interpolation Method (EIM) (Barrault et al., C. R. Math. Acad. Sci. Paris 339(9), 667–672, 2004 and Tonn, 2012), we generalize the existing partitioning concepts to arbitrary input functions with possibly unknown, high-dimensional, or even without direct parameter dependencies. No a-priori information about the input is necessary. We create affine decomposition and partitions without the knowledge of either an explicit description of the parameter domain or of the form of the partitions. The main idea is to perform several EIMs such that different parts of the family of possible input functions are covered. For a new input in the online stage, the coefficients of the resulting affine decomposition are used for the assignment to the appropriate EIM. An application includes PPDEs with stochastic influences (Chen et al., Math. Model. Numer. Anal. 48(4), 943–953, 2014, Haasdonk et al., SIAM/ASA J. Uncertain. Quantif. 1, 79–105, 2013 and Wieland, 2013). For some probability space, the parameter domain is now associated with the set of possible random outcomes. Hence, the elements of the parameter set are not parameters in classical sense and there often is no explicit description of the class of outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9), 667–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, P., Quarteroni, A., Rozza, G.: A weighted empirical interpolation method: a priori convergence analysis and applications. ESAIM: Math. Model. Numer. Anal. 48(4), 943–953 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eftang, J.L., Knezevic, D.J., Patera, A.T.: An hp certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. Syst. 17(4), 395–422 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eftang, J.L., Patera, A.T., Rønquist, E.M.: An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32(6), 3170–3200 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eftang, J.L., Stamm, B.: Parameter multi-domain hp empirical interpolation. Int. J. Numer. Methods Eng. 90(4), 412–428 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-bias approximations of parametrized parabolic partial differential equations. M2AN Math. Model. Numer. Anal. 39(1), 157–181 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17(4), 423–442 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haasdonk, B., Urban, K., Wieland, B.: Reduced basis methods for parametrized partial differential equations with stochastic influences using the Karhunen-Loève expansion. SIAM/ASA J. Uncertain. Quantif. 1, 79–105 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Maday, Y., Nguyen, N.C., Patera, A.T., Pau, S.H.: A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1), 383–404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Maday, Y., Stamm, B.: Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces. SIAM J. Sci. Comput. 35(6) (2013)

  12. Patera, A.T., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations (2006). Version 1.0, MIT Cambridge MA (2006)

  13. Peherstorfer, B., Butnaru, D., Willcox, K., Bungartz, H.J.: Localized discrete empirical interpolation method. SIAM. J. Sci. Comput. 36(1), A168—A192 (2014)

    MathSciNet  Google Scholar 

  14. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tonn, T.: Reduced-basis method (RBM) for non-affine elliptic parametrized PDEs (motivated by optimization in hydromechanics). Ph.D. thesis Ulm University, Ulm (2012)

    Google Scholar 

  16. Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8-9), 773–788 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wieland, B.: Reduced basis methods for partial differential equations with stochastic influences. Ph.D. thesis, Ulm University (2013)

    Google Scholar 

  18. Yano, M., Patera, A.T., Urban, K.: A space-time hp-interpolation-based certified reduced basis method for Burgers’ equation. Math. Models Methods Appl. Sci. 24(09), 1903–1935 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Wieland.

Additional information

Communicated by: Jan Hesthaven

This paper was partly written while B.W. was funded by the state of Baden-Württemberg according to the State Postgraduate Scholarships Act (Landesgraduiertenförderungsgesetz).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieland, B. Implicit partitioning methods for unknown parameter sets. Adv Comput Math 41, 1159–1186 (2015). https://doi.org/10.1007/s10444-015-9404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9404-5

Keywords

Mathematics Subject Classification (2010)

Navigation