Skip to main content
Log in

Approximation of the multi-dimensional Stokes system with embedded pressure discontinuities

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Surface tension in multi-phase fluid flow engenders pressure discontinuities on phase interfaces. In this work we present a finite element method to solve viscous incompressible flows problems, especially designed to cope with such a situation. Taking as a model the Stokes system we study a finite element solution method based on a classical Galerkin-least-squares formulation with an added pressure jump term multiplied by the mesh step size. Both the velocity and the pressure are represented with continuous piecewise linear functions except for the latter field on the embedded interface. A suitable modification of the pressure space is employed in order to represent interface discontinuities. A priori error analyses point to optimal convergence rates for this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ausas, R., Sousa, F., Buscaglia, G.: An improved finite element space for discontinuous pressures. Comput. Methods Appl. Mech. Eng. 199, 1019–1031 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Braess, D.: Finite Elements Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (1997)

  4. Brenner, S., Carstensen, C. In: Stein, E., De Borst, R., Hughes, T.J.R. (eds.) : Finite element methods. In: Encyclopedia of Computational Mechanics. Wiley Online Library

  5. Buscaglia, G., Agouzal, A.: Interpolation estimate for a finite-element space with embedded discontinuities. IMA J. Numer. Anal. 32, 672–686 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buscaglia, G., Ausas, R.F.: Variational formulations for surface tension, capillarity and wetting. Comput. Methods. Appl. Mech. Eng. 200, 3011–3025 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buscaglia, G., Ruas, V.: Finite element methods for the Stokes system with interface pressure discontinuities, IMA Journal of Numerical Analysis, first published online December 4, 2013, doi: 10.1093/imanum/drt035

  8. Cartan, E.: Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris (1928)

    MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Douglas, J., Wang, J.: An absolutely stabilized finite element method for the stokes problem. Math. Comput. 52-186, 495–508 (1989)

    Article  MathSciNet  Google Scholar 

  11. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, N. Y., 2004

  12. Geymonat, G.: Trace theorems for Sobolev spaces on Lipschitz domains. Necessary conditions. Annal. Math. Blaise Pascal 14, 187–197 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Girault, V., Raviart, P.A.: Finite Element Methods for the Navier-Stokes Equations. Springer (1986)

  14. Hughes, T.J.R., Franca, L., Balestra, M.: A new finite element formulation for computational fluid dynamics,: V. The Circumventing the Babuška-Brezzi condition: A stable Petrov -Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. & Eng. 59, 85–99 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ladyzhenskaïa, O.A.: The boundary value problems of mathematical physics, Vol. 49. Springer, New York (1985)

    Book  Google Scholar 

  16. Lai, M.J.: Multivariate splines and their applications, computational complexity, theory, techniques and applications, doi: 10.1007/978-1-4614-1800-9-126 (2012), 1939–1980

  17. Lax, P.D., Richtmyer, R.D.: Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math. 9, 267–293 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lions, J.L.: Problèmes aux limites dans les équations aux dérivées partielles. Presses de l’Université de Montréal (1965)

  19. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, Masson, Paris (1968)

  20. Rangarajan, R., Lew, A.J.: Analysis of a method to parameterize planar curves immersed in triangulations. SIAM J. Numer. Anal. 51-3, 1392–1420 (2013)

    Article  MathSciNet  Google Scholar 

  21. Sanchez, A.M., Arcangeli, R.: Estimation des erreurs de meilleure approximation polynomiale et d’interpolation de Lagrange dans les espaces de Sobolev d’ordre non entier. Numer. Math. 45, 301–321 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Scott, L.R., Zhang, S.: Finite element interpolation of non smooth functions satisfying boundary conditions. Math. Comput. 54-190, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  23. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoriano Ruas.

Additional information

Communicated by: Axel Voigt

Vitoriano Ruas is a visiting professor at Universidade de São Paulo, Instituto de Ciências Matemáticas e Computação, São Carlos, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buscaglia, G., Ruas, V. Approximation of the multi-dimensional Stokes system with embedded pressure discontinuities. Adv Comput Math 41, 599–634 (2015). https://doi.org/10.1007/s10444-014-9378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9378-8

Keywords

Mathematics Subject Classifications

Navigation