Skip to main content
Log in

Construction of positive definite cubature formulae and approximation of functions via Voronoi tessellations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let Ω ⊂ ℝd be a compact convex set of positive measure. In a recent paper, we established a definiteness theory for cubature formulae of order two on Ω. Here we study extremal properties of those positive definite formulae that can be generated by a centroidal Voronoi tessellation of Ω. In this connection we come across a class of operators of the form \(L_n[f](\boldsymbol{x}):= \sum_{i=1}^n \phi_i(\boldsymbol{x})(f(\boldsymbol{y}_i) + \langle\nabla f(\boldsymbol{y}_i), \boldsymbol{x}-\boldsymbol{y}_i\rangle)\), where \(\boldsymbol{y}_1,\dots, \boldsymbol{y}_n\) are distinct points in Ω and {ϕ 1, ..., ϕ n } is a partition of unity on Ω. We present best possible pointwise error estimates and describe operators L n with a smallest constant in an L p error estimate for 1 ≤ p < ∞ . For a generalization, we introduce a new type of Voronoi tessellation in terms of a twice continuously differentiable and strictly convex function f. It allows us to describe a best operator L n for approximating f by L n [f] with respect to the L p norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brass, H.: Quadraturverfahren. Vandenhoeck & Ruprecht, Göttingen (1977)

    MATH  Google Scholar 

  2. Davis, P.J., Rabinowitz, P. : Methods of Numerical Integration (2nd edn.). Academic Press, Orlando (1984)

    MATH  Google Scholar 

  3. Du, Q., Faber, V., Gunzberger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fejes Tóth, G.: A stability criterion to the moment theorem. Studia Sci. Math. Hungar. 38, 209–224 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Fejes Tóth, L.: Sur la représentation d’une population infinie par un nombre fini d’éléments. Acta Math. Acad. Sci. Hungar. 10, 299–304 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gruber, P.M.: Über optimale Quantisierung. Math. Semesterberichte 49, 227–251 (2003)

    MathSciNet  Google Scholar 

  8. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guessab, A., Nouisser, O., Schmeisser, G.: A definiteness theory for cubature formulae of order two. Constr. Approx. 24, 263–288 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Halmos, P.R.: Measure Theory. Van Nostrand, Princeton (1950)

    MATH  Google Scholar 

  11. Newman, D.J.: The hexagon theorem. IEEE Trans. Inform. Theory 21, 137–139 (1982)

    Article  Google Scholar 

  12. Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Schmeisser.

Additional information

Communicated by Tomas Sauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guessab, A., Schmeisser, G. Construction of positive definite cubature formulae and approximation of functions via Voronoi tessellations. Adv Comput Math 32, 25 (2010). https://doi.org/10.1007/s10444-008-9080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-008-9080-9

Keywords

Mathematics Subject Classifications (2000)

Navigation