Skip to main content
Log in

Refinement equations and spline functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we exploit the relation between the regularity of refinable functions with non-integer dilations and the distribution of powers of a fixed number modulo 1, and show the nonexistence of a non-trivial C  ∞  solution of the refinement equation with non-integer dilations. Using this, we extend the results on the refinable splines with non-integer dilations and construct a counterexample to some conjecture concerning the refinable splines with non-integer dilations. Finally, we study the box splines satisfying the refinement equation with non-integer dilation and translations. Our study involves techniques from number theory and harmonic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auscher, P.: Wavelet bases for L 2(R) with rational dilation factor. In: Ruskai, M.B., et al. (eds.) Wavelets and their Applications, pp. 439–452. Jones and Bartlett, Boston (1992)

    Google Scholar 

  2. Cavaretta, A., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Amer. Math. Soc. 93, 1–186 (1991)

    MathSciNet  Google Scholar 

  3. Dai, X.-R., Feng, D.-J., Wang, Y.: Classification of refinable splines. Constr. Approx. 24, 187–200 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dai, X.-R., Feng, D.-J., Wang, Y.: Refinable functions with non-integer dilations. J. Funct. Anal. 250, 1–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dai, X.-R., Feng, D.-J., Wang, Y.: Structure of refinable splines. Appl. Comput. Harmon. Anal. 22, 374–381 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Daubechies, I., Lagarias, J.C.: Two-scale difference equations I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22, 1388–1410 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    Google Scholar 

  8. de Mathan, B.: Numbers contravening a condition in density modulo 1. Acta Math. Acad. Sci. Hung. 36, 237–241 (1980)

    Article  MATH  Google Scholar 

  9. de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer, New York (1993)

    MATH  Google Scholar 

  10. DeVore, R., Ron, A.: Developing a computation-friendly mathematical foundation for spline functions. SIAM News 38, 5 (2005), May

    Google Scholar 

  11. Dubickas, A.: On the fractional parts of lacunary sequences. Math. Scand. 99, 136–146 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Erdös, P.: On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61, 974–976 (1939)

    Article  MathSciNet  Google Scholar 

  13. Erdös, P.: Problems and results on Diophantine approximations. II, Repartition modulo 1, Actes Colloq. Marseille-Luminy 1974. Lecture Notes in Math. 475, 89–99 (1975)

    Article  Google Scholar 

  14. Feng, D.J., Wang, Y.: Bernoulli convolutions associate with certain non-Pisot numbers. Adv. Math. 187, 173–194 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goodman, T.N.T.: Refinable spline functions. In: Chui, C.C., Schumaker, L.L. (eds.) Approximation Theory IX, pp. 1–25. Vanderbilt University Press, Nashville, TN (1998)

    Google Scholar 

  16. Guan, Y., Lu, S., Tang, Y.: Characterization of compactly supported refinable splines whose shifts form a Riesz basis. J. Approx. Theory 133, 245–250 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jia, R.Q., Micchelli, C.A.: Using the Refinement Equations for the Construction of Pre-wavelets. II. Powers of Two, Curves and Surfaces, pp. 209–246. Academic Press, Boston, MA (1991)

    Google Scholar 

  18. Jia, R.Q., Sivakumar, N.: On the linear independence of integer translates of box splines with rational direction. Linear Algebra Appl. 135, 19–31 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Khintchine, A.: Über eine Klasse linearer diophantischer Approximationen. Rend. Circ. Mat. Palermo 50, 170–195 (1926)

    Article  Google Scholar 

  20. Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics vol. 211. Springer, New York (2002)

    Google Scholar 

  21. Lawton, W., Lee, S.L., Shen, Z.: Characterization of compactly supported refinable splines. Adv. Comput. Math. 3, 137–145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Peres, Y., Schlag, W.: Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102, 193–251 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pollington, A.D.: On the density of the sequence {n k ξ}. Ill. J. Math. 23, 511–515 (1979)

    MathSciNet  Google Scholar 

  24. Schinzel, A.: Polynomials with Special Regard to Reducibility. Encyclopedia of Mathematics and its Applications, vol. 77. CUP, Cambridge (2000)

    Google Scholar 

  25. Solomyak, B.: On the random series ∑ ±λ n (an Erdös problem). Ann. Math. 142, 611–625 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sun, Q.: Refinable functions with compact support. J. Approx. Theory 86, 240–252 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, D.X.: Some characterizations for box spline wavelets and linear Diophantine equations. Rocky Mountain J. Math. 28, 1539–1560 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Xu.

Additional information

Communicated by R. Q. Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubickas, A., Xu, Z. Refinement equations and spline functions. Adv Comput Math 32, 1 (2010). https://doi.org/10.1007/s10444-008-9079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-008-9079-2

Keywords

Mathematics Subject Classifications (2000)

Navigation